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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that leads to memory loss and a decline
in cognitive abilities. It primarily affects older adults and is the most common cause of dementia. Using deep
learning, models can analyze brain imaging scans to detect specific patterns and biomarkers associated with
the disease. Supervised learning models achieve high accuracy rates, but they require a large amount of data
sets and labelled medical images. Self-supervised learning can achieve high accuracy rates with fewer training
data. This study proposes a self-supervised attentive feature learning network (SSA-Net) for classifying
Alzheimer’s disease. The proposed approach leverages self-supervised learning and attention mechanisms to
enhance the accuracy and reliability of the classifying model. We employ ResNet-50, incorporating attentive
activation, which replaces the ReLU activation, improving the ability of the neural model to focus on the most
relevant features in the input medical images. We use SimCLR (Simple Framework for Contrastive Learning of
Visual Representations) with the ResNet-50 backbone as a self-supervised learning framework that effectively
learns high-quality visual representations in brain MRI (Magnetic Resonance Imaging) scans without labelling.
We used the Kaggle Alzheimer’s classification dataset (KACD) containing brain MRI scans for training and
testing. Experimental results on the KACD dataset show that the proposed attentive self-supervised ResNet50
reached 99.7% classification accuracy compared to the traditional ResNet50 with 98.1% accuracy. Evaluation
metrics show the effectiveness of the proposed SSA-Net for the efficient classification of Alzheimer’s disease.
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I. INTRODUCTION

ALZIIEI{V{HR disease is a progressive neurodegenerative disorder
that leads to the gradual deterioration of cognitive abilities and
memory. It stands as the leading cause of dementia in older adults.
Classifying AD into stages such as non-demented, very mildly
demented, mildly demented, and moderately demented is essential.
This classification allows for personalized medical care and effective
monitoring of disease progression. The early and exact identification
of the AD stage enables healthcare providers to tailor interventions
more effectively, potentially slowing the progression of the disease. AD
causes extensive neuronal damage, disrupting associations with critical
brain regions like the cerebral cortex and hippocampus. However, the
exact reason for Alzheimer’s remains unidentified; it is often associated
with the accumulation of neurofibrillary tangles and amyloid plaques

[1]. The report discussing the increasing apprehensions regarding
the growing trend of dementia across the world [2]. The number of
dementia cases is predicted to increase from 57.4M to 152.8M by 2050.
The World Health Organization (WHO) documents that there are 10
million new dementia cases annually worldwide, which means one
new case every 3.2 seconds. These reports indicate a notable rise in
dementia over time, emphasizing effective systems to manage this
growing challenge.

Classification of AD using deep neural networks (DNNs) is an
emerging domain that leverages the ability of artificial intelligence
to improve detection accuracy. DNN models, especially convolutional
neural networks (CNNs), have demonstrated significant potential in
analyzing medical imaging data such as MRI (Magnetic Resonance
Imaging) and PET (Positron Emission Tomography) scans. MRI
provides high-resolution structural images of the brain, helping
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identify atrophy patterns typical of AD, while PET scans, using tracers
like 18F-FDG, reveal metabolic activity indicative of the disease [3],
[4]. These models are trained on large datasets to detect fine changes
in brain structure and function, offering a non-invasive, automated
approach to early detection and progression monitoring. Integrating
DNNs in AD research improves early detection and personalized
treatment procedures. MRI is considered the most advanced and
precise radiological technique to examine the brain’s structural
transitions. MRI captures images from different angles, typically in
axial, sagittal, and coronal planes, providing comprehensive insights
into the brain’s anatomy and potential abnormalities [5]. Detecting
alterations in the corpus callosum is possible through axial plane MRI
scans. This imaging technique is valuable for differentiating between
various phases of AD [6], [7].

Recently, countless studies have examined the potential use of
DNN s in detecting AD. Classes of the convolutional neural networks
(CNN), such as, ResNet [8], [9], VGG [10], AlexNet [11], GoogleNet
[12], and recurrent neural networks (RNN) [13], are considered to
improve the AD detection. A study [14] introduced the model to
classify four dementia stages—very mild dementia, mild dementia,
moderate dementia, and non-dementia. Dementia image features
are effectively visualized by employing the occlusion sensitivity
map alongside multifocal ground-glass opacities. Another study
[15] devised a model that combines Inception and ResNet, achieving
significant improvements against standalone ResNet and Inception.
A study [16] classified distinct AD stages: cognitively normal (not-
demented), early-stage (very mild-demented), later-stage (mild-
demented), and AD (moderate-demented). Another study employed
different CNN models, including ResNet-50, DenseNet-201, VGG-
16, and AlexNet to develop a hybrid model based on ResNet50 with
additional layers. The proposed hybrid model showed improved
performance in detecting Alzheimer’s disease. Another study [17]
formulated an automated neural detection approach operating on the
sagittal plane of the brain MRI. The study operated transfer learning,
utilizing ResNet for feature extraction and a SVM classifier for AD
detection. Another study [18] proposed an Alzheimer’s detection
using a pre-trained AlexNet for feature extraction. These features
are then classified using different classifiers, including KNN, random
forest, and SVM. A study [19] presents a multistage CNN model to
detect AD. The framework has developed a 26-layer convolutional
neural network specifically designed to distinguish between
individuals without dementia and those with dementia. The model is
reutilized via transfer learning to sub-classify dementia into severe,
moderate, and mild stages. Exploiting the fixed weights, transfer
learning has facilitated precise sub-classification of AD. In another
study [20] a CNN architecture is formulated that utilized MRI data
for AD classification. The network consists of two CNN models with
different filter sizes and pooling layers, concatenated in a classification
layer. Another study [21] uses MobileNet to classify five AD stages.
Another study [22] employs a combination of deep CNN and ensemble
learning, specifically MobileNetV2 and LSTM, using magnetic
resonance images (MRI). In another study [23], a particle swarm
optimization-based model is proposed to optimize hyperparameters
for classifying Alzheimer’s disease severity. The CNN model achieved
a highly accurate classification of Alzheimer’s disease, achieving
99.53% accuracy and a 99.63% F1-score. The study [24] introduces four
different models for classifying manifold dementia stages including
custom-built CNNs, VGG-16 using extra convolutional layers, graph
convolutional network, and a hybrid of CNN and graph convolutional
network. CNNs are first formed and their flattened layer outputs
are subsequently fed to the graph convolutional network classifier.
Another recent study [25] presents an architecture combining Multi-
View Separable Residual CNNs, capable of processing total volumes

with spatial complexity related to 2D CNNs. The model integrates
voxel spatial relationships and achieves a significant 50% reduction
in memory usage compared to 3D CNNs. Evaluated on a dataset of
540 patients (191 CN, 145 EMCI, 122 LMCI, 82 AD, 397 SMCI, and 61
PMCI), the model achieved accuracies of 86.97% for CN vs. EMCI vs.
LMCI vs. AD and 95.73% for SMCI vs. PMCI classifications. A study
[26] examines reinforcement learning to classify AD.

For AD classification, integrating ResNet architectures with self-
attention can be extremely beneficial. ResNet can capture complex
hierarchical features from MRI scans for classifying fine structural
changes signifying AD stages. By using pretrained or fine-tuned
ResNet models, the network can efficiently extract features that
signify early signs of AD. A study [27] introduces an AlzhiNet
model formulated for detecting AD using 3D volumetric MRI data
for multi-class classification. AlzhiNet incorporates self-attention to
differentiate between stages such as mild cognitive impairment (MCI)
and AD, with cognitively normal patients helping as the control group.
A study suggested using a self-attention method to divide the brain
into 90 regions by employing automatic anatomical labelling [28].
The next step involves calculating intermediate fractional anisotropy
scores for each pair of brain areas. These scores are then used to
construct a detailed and complex brain network. This network was
then fed to the graph convolutional neural network, which integrated
a self-attention pooling process. Additionally, the study leveraged the
number of voxels with fibers passing through each brain region as
node features. The researchers assessed various preprocessed brain
networks and node features for their classification performance and
reported a remarkable accuracy rate of 87.5% in distinguishing between
individuals with Alzheimer’s disease (AD) and normal controls (NC).
A study [29] employed the ResNet50 architecture, modified to include
self-attention for extracting meaningful features. The process initiated
with the optimization of both the hyperparameters and the model
using Bayesian optimizers. Once optimized, the model was utilized to
extract features, which were then further optimized through a self-
attentional approach. The most effective features were selected and
fed into the classifiers for the ultimate classification task. As a result
of these experiments, a significant improvement was achieved with an
accuracy of 99.9%.

This study uses the Simple Framework for Contrastive Learning of
Visual Representations (SimCLR) framework to train an attentional
ResNet-50 model in a self-supervised learning manner. Since
unsupervised learning operates without explicit class labels during
training, this study formulates a neural model to accurately classify
AD stages from MRI images as cognitively normal (non-dementia),
early-stage (very mild-dementia), later-stage (mild-dementia), and AD
(moderate-dementia). During the training process using the SimCLR
learning framework, all input data points exclusively contain MRI
images without label information. For ResNet-50, the architecture
largely remains unchanged in terms of layer structure (convolutional
layers and skip connections), but replaces ReLU activation with
an attentive activation (AttAct) [30]. Attentive activation focuses
on important features in the MRI images, allowing the model to
selectively emphasize relevant information while de-emphasizing less
relevant features. This potentially leads to more learned discriminative
features, improving the ability of the model to determine AD classes
(non-dementia, very mild dementia, mild dementia, and moderate
dementia). The model learns to extract features that capture high-level
abstract information regarding the input MRI images, guided by the
contrastive loss function. After training on the unlabeled MRI images,
the SimCLR framework produces learned feature representations
(embeddings) of these images. Once the model learns feature
representations from unlabeled images, the representations are fine-
tuned for AD classification. The contributions of the study are twofold.

-120 -



Regular Issue

Attentional
ResNet-50
Enconder

Data
Augmentation

Attentional
ResNet-50
Enconder

Input MRI Scan

Representation hi
Representation hj

L 1 Projection MLP —>4—|

Maximize Agreement

—H Projection MLP

Tranformed
Samples

y

AD Classification

Fig. 1. Proposed Methodology with unsupervised feature learning using attentional ResNet-50.

First, we employ the SIimCLR framework to train an attentional
ResNet-50 model using a self-supervised learning approach that focuses
on learning effective representations from unlabeled MRI images. The
SimCLR applies data augmentation to create multiple views of MRI
images, which helps the model learn robust features that are consistent
with interpretations in the input data. Secondly, for ResNet-50, we
make a few architectural changes and replace standard ReLU activation
with an attentive activation. Unlike ReLU, which applies a fixed non-
linearity, attentive activation adaptively adjusts the responses based on
the input and context. This adaptability leads to more robust feature
representations that are adjusted to the specific characteristics of MRI
images, potentially improving generalization. The remaining paper is
arranged as follows: Section II provides a detailed description of the
proposed model (SSA-Net). The experimental setup is explained in
Section II. Section IV presents the experimental results and discussions.
Finally, Section V concludes the study.

II. METHODOLOGY

We utilize the SimCLR framework to train an attentional ResNet-50
model through a self-supervised learning method aimed at deriving
effective representations from unlabeled MRI images. SimCLR
employs data augmentation to generate multiple views of MRI images,
enabling the model to learn robust features consistent with the input
data interpretations. For the ResNet-50 model, we introduce several
architectural modifications and replace the standard ReLU activation
with an attentive activation [31]. Unlike ReLU, which applies a fixed
non-linearity, attentive activation adaptively adjusts responses based
on input and context. This adaptability results in more robust feature
representations. The network is further fine-tuned using SimCLR.
This indicates that pre-trained weights are used as initial weights for
training, where input data includes label information. Fig. 1 depicts the
proposed methodology.

A. Training Protocol

SimCLR learns representations by maximizing the similarity
between different augmented views of the same MRI samples using
a contrastive loss function in the latent space. As illustrated in Fig.
1, the framework contains four components. First, a stochastic data
augmentation module randomly transforms the given MRI image,
resulting in two correlated views of the same MRI sample, $;and § i
which are considered a positive pair. In this study, we apply simple
random cropping augmentation. Secondly, the ResNet-50 neural
network base encoder f(-) extracts feature representations from the
augmented MRI samples; i.e.,

h; = f(8;) = ResNet50(5;) )

where h € R, represents the outputs after the average pooling layer.

After this, the representations are then processed by a projection
head g () to map them into the space where the contrastive loss is

applied. A single hidden-layered MLP is used for this projection,
which is given as:

z; = g(hy)
z; = w® O’(W(l)hi)

@)
®)

where z denotes the projected feature used for computing the
contrastive loss and ¢ is the ReLU non-linearity. Following the
projection head, a contrastive loss function is applied for contrastive
prediction. Given a set {§,,} that includes the positive pair samples
S ; and s j, the contrastive prediction aims to identify s jin {Is\m}mn— for
a given §; We follow the standard methodology for computing the
contrastive loss. The loss for the positive pair samples (i, j) can be
defined as:

exp(sim(z;, zj)/r)
DAL ) Umeq) exp(sim(z;, 2p) /7)

Ljy = ~log
©)

where 1, € {0,1} is an indicator function and t denotes the
temperature parameter. The final loss function is computed over all
positive pairs in a mini-batch. This loss is known as the normalized
temperature-scaled cross-entropy loss.

B. Model: Attentional ResNet-50

ResNet-50 is a deep convolutional neural network that has been
effectively utilized in Alzheimer’s disease analysis to improve the
accuracy of early detection and progression prediction. By leveraging
a 50-layer architecture, ResNet-50 captures complex patterns and fine
changes in brain MRI images. The model’s ability to perform residual
learning allows it to address the vanishing gradient problem, ensuring
robust feature extraction even in deep layers. This capability is
important for identifying the fine structural and functional alterations
associated with Alzheimer’s disease, thus aiding in early intervention
and personalized treatment planning.

We use ResNet-50 as the base model with a few architectural
changes and replace the standard ReLU activation with an attentive
activation (AttAct). Attention and activation are distinct functions,
but both are nonlinear gating functions. Drawing on this similarity,
the ResNet-50 encoder combines attention and activation as a single
approach, called attentional activation (AttAct).

The local channel attention block in AttAct enables simultaneous
nonlinear activation and feature refinement. This block collects
local point-by-point cross-channel feature contexts, improving the
interpretation and performance of ResNet-50. Fig. 2 demonstrates the
architecture of the AttAct block integrated into ResNet-50 for a fully
attentional ResNet-50 backbone.

When considering a particular intermediate feature map denoted

as f, the transformation brought about by attention can be expressed
as follows:

f=AtG(H®f (5)
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Fig. 2. The contrastive learning of visual representations.

where @ represents element-wise multiplication and AttG(f)
denotes the attention-weighted feature map created via attention
gating. The effectiveness of the attention gating relies significantly on
the complete feature map f. At any given position (i, j, k), Equation (5)
can be expressed in scalar form as:

Fliijrr = ACGHijks ~ fijrn = G~ frijik (6)

where g performs complex gating by aggregating feature contexts

for the position (i, j, k), yielding attention weights for F__ .

According to [31], activation can also be represented as a gating
function:

Fiijir = 9Kijra) - Xiijika )

In a typical ReLU activation function, the scalar function g acts
as an indicator by determining whether the input is greater or less
than zero. The AttAct, aside from introducing non-linearity, enables
ResNet to carry out context-aware, layer-wise, and adaptive feature
refinement. In this study, AttAct is implemented as the activation
function throughout the entire ResNet architecture.

AttAct utilizes point-by-point convolutions to incorporate local
attention. These convolution operations allow for the exploration of
cross-channel relationships in a point-by-point style while efficiently
utilizing only a small set of training parameters. The attentional
activation, as in Fig. 3, empowers ResNet to activate and refine
selective features element-wise, leveraging point-by-point cross-
channel correlations. The attentional weights Att(f) are calculated
using a bottleneck configuration to reduce the number of parameters:

Att(f) = o(BN(PWConv, (6§ (BN(PWConv; (f))))))) 8)

where 6 and o represent the ReLU and sigmoid activation
functions, and BN refers to batch normalization. The kernel sizes are
PWConv, = (C/r x Cx 1 x 1) and PWConv, = (C X C/r X 1 x 1), where
r is the channel reduction ratio.

The function Att(f) has the same shape as the input feature map,
and the resultant activated features are obtained via element-wise
multiplication:

ff=At()Qf 9)
Instead of using the traditional ReLU activation function, AttAct

selectively activates and refines features in the ResNet-50 layers.

III. EXPERIMENTS AND SETTINGS

A. Dataset and Data Splitting

This study uses the Kaggle Alzheimer’s classification Dataset
(KACD), which contains brain MRI scans and was obtained from a
challenge on the Kaggle. The dataset consists of 6400 MRI samples

Input X®
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Fig. 3. Architecture of the attentional activation (AttAct).

(5121 training and 1279 testing samples). The dataset is divided into
non-demented, very mild demented, mild demented, and moderate
demented. The scans are collected in the axial plane with (128x 128)
pixels dimensions, as shown in Fig. 4. The non-demented class indicates
normal cognition, whereas the very mild demented class indicates
an early stage of disease with fine symptoms. The mild demented
describes the stage of Alzheimer’s disease at which symptoms are
noticeable and can be identified. In the moderate demented class, a
patient encounters difficulty in thinking, reasoning, movement, and
day-to-day tasks. Table I provides the details of the KACD. Cross-
validation is a useful approach used to evaluate the performance of
a model on new, unseen data, which helps generalize the model for
independent datasets. This study utilizes a k-fold cross-validation
approach with k set to 5. The process begins by splitting the dataset
into a training set (80%) and a testing set (20%). Following the initial
assessment, k-fold cross-validation is implemented by dividing the
training set into k subsets. Finally, the performance of the model is
evaluated on a 20% test set, which is not used for either training or
cross-validation.

©

Fig. 4. MRI images. (A) Non-demented, (B) Very Mild, (C) Mild, and (D)
Moderate.
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TABLE I. DETAILS OF THE KACD WiTH MRI BRAIN IMAGES TP+ TN
Accuracy (ACC) =
TP+TN+FP+FN (10)
Class Name Train Set Test Set Total
TP
Non-Demented 2560 640 3200 Recall (Sensitivit =—
( Y =ThrEN 11)
Very Mild Demented 1792 448 2240 P
i Precision =——+
Mild Demented 717 179 896 TP + FP 12)
Moderate Demented 52 12 64 .- .
where TP, TN, FP, and FN represent the true positives, true negatives,
Total Class 5121 1279 6400 false positives, and false negatives, respectively.

B. Network and Performance Metrics

ResNet-50 is a deep convolutional neural network (DCNN), and the
architecture details are given in Table II. In the network configuration, the
training is set to run for 200 epochs utilizing Stochastic Gradient Descent
(SGD) with Sharpness-Aware Minimization (SAM) as the optimization
strategy. The loss function employed is the normalized temperature-
scaled cross-entropy, which is designed to improve model performance
by addressing the issue of overconfidence in class predictions.

TABLE II. THE RESNET-50 BACKBONE NETWORK ARCHITECTURE WHERE RELU
Is REPLACED WITH ATTENTIONAL ACTIVATION (ATTACT)

Layer Output 50-Layers Description

Convl 112x112 7 x 7Conv, 64

Conv2 56 x56 [(1x1,64),(3x3,64),(1x1,256)]x3

Conv3 28x28 [(1x1,128),(3x3,128),(1x1,512)] x4

Conv4 14x 14 [(1x1,256),(3x3,256),(1x1,1024)]x6

Conv5 7x7 [(1x1,512),(3x3,512),(1x1,2048)]x3
- 1x1 Avg Pool, 1000d Fully Connected, Softmax

FLOPs 3.8x10°

The learning rate is initialized at 0.001, with a momentum of 0.9 to
help accelerate the training process and improve convergence. The p
parameter is set to 2, controlling the sharpness penalty in the SAM
optimizer. Additionally, weight decay is applied with a value of 1 x 10®
to regularize the model and prevent overfitting. The optimizer used for
training the network is Adam, known for its adaptive learning rate
and weight decay, which further enhances the training stability and
performance of the ResNet-50 model. f is the temperature parameter
which controls the sharpness of the similarity distribution, with a
value fixed to 0.1. The models are implemented using Python and
PyTorch, running on an Intel(R) Core(TM) i5-1135G7 CPU @ 2.40GHz
(8 CPUs) processor with 8GB RAM and an NVIDIA GeForce GTX 960.
Fig. 5 displays the learning curves for the AD stage classification task
using the KACD dataset, showing no signs of overfitting throughout
the training process.

Key metrics for the performance evaluation include Accuracy
(ACC), Sensitivity (Recall), Precision, F1-score, and Area Under Curve
(AUC). These metrics present comprehensive details of a model’s
performance. The ACC, Recall, and Precision metrics are defined as:

IV. RESULTS AND DISCUSSIONS

We present the results of the proposed Alzheimer’s Disease
classification model, evaluated using Accuracy, Recall, F1-score, and
Precision. The performance of our model is compared to other DNN-
based models for Alzheimer’s Disease classification. To determine the
best accuracy, we employ 5-fold cross-validation.

A. Overall Performance

Table III demonstrates the results of the proposed SSA-Net. This
model involves training ResNet-50 using the SimCLR learning
framework and replacing the standard ReLU with attentional activation.
The model’s performance is evaluated based on Accuracy, Precision,
F1-score, Recall, Error rate, and False-Positive Rate (FPR) across non-
demented (ND), very mild demented (VMD), mild demented (MD), and
moderate demented (MOD).

TABLE IIl. PERFORMANCE OF THE PROPOSED SSA-NET ON ALZHEIMER’S
Di1SEASE DETECTION AND CLASSIFICATION

Metric ND VMD MD MOD
Accuracy 99.77% 99.77% 99.84% 99.97%
Precision 99.69% 99.78% 99.44% 99.97%
F1-Score 99.76% 99.69% 99.44% 99.97%

Recall 99.84% 99.60% 99.44% 99.97%
Error Rate 0.0023 0.0023 0.0016 0.00
FPR 0.0031 0.0012 0.0009 0.00

The results indicate highly accurate Alzheimer’s Disease detection
and classification across all classes: mild demented (99.84% accuracy,
99.44% precision, 99.44% recall, and 99.44% F1 score), moderate
demented (100% accuracy, precision, recall, and F1 score), non-
demented (99.77% accuracy, 99.69% precision, 99.84% recall, and 99.76%
F1 score), and very mild demented (99.77% accuracy, 99.78% precision,
99.56% recall, and 99.67% F1 score). These metrics demonstrate
minimal error rates (ranging from 0% to 0.23%) and low false positive
rates (ranging from 0% to 0.31%), underscoring the model’s robustness
in accurately distinguishing between different dementia stages.
These findings indicate the critical importance of early detection and
effective procedures in clinical settings, supporting the potential of
deep learning models in improving the detection of AD accuracy.
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Fig. 6. Confusion Matrix Analysis. ResNet-ReLU (with ReLU activation in the encoder); ResNet-AttAct (with attentional activation in the encoder); and SSA-Net
(trained with SimCLR and attentional activation in the encoder). Receiver Operating Characteristic Curve (ROC). ResNet+ReLU; ResNet+AttAct, and SSA-Net

(SimCLR+AttAct).
To demonstrate the influence of attentional activation in the 0 Mild Demented . Moderate Demented
proposed model, we trained the ResNet-50 model using the SimCLR
learning framework and the standard ReLU activation. The results el 20
indicated that with ReLU activation, the model’s performance © 0
declined across all metrics and classes, except for the moderate
dementia class. Table IV presents the results of the model without 60 60
attentional activation. The accuracy of SSA-Net is increased by 1.26% % %
(non-demented), 1.54% (very mild demented), 0.39% (mild demented),
and both models perform equally well for the moderate demented 100 100
category. The F1-score of SSA-Net has seen an increase of 1.23% for 120 o
the non-demented category, 2.13% for very mild demented, and 1.41%
X 0 20 40 60 80 100 120 0 20 40 60 80 100 120
for mild demented. Both models perform equally well for the moderate
No Demented Very Mild Demented
demented category. 0
TABLE IV. PERFORMANCE OF RESNET-50 WITH ATTENTIVE ACTIVATION 20 20
REPLACING RELU ON ALZHEIMER’S DISEASE DETECTION AND CLASSIFICATION
40 40
Metric ND VMD MD MOD " 0
Accuracy 98.51% 98.28% 99.45% 99.96%
80 80
Precision 97.41% 98.90% 98.86% 99.96%
100 100
F1-Score 98.53% 97.56% 98.03% 99.96%
120 120
Recall 99.68% 96.25% 97.21% 99.96% 0 20 40 60 80 100 120 0 20 40 60 80 100 120
E Rat 0.0148 0.0172 0.0055 0.00
rror Rate Fig. 7. Visualization of the heatmaps on the disease classes.
FPR 0.0266 0.0060 0.0018 0.00

Fig. 6 shows an analysis of the confusion matrix for three deep
learning models: SSA-Net, ResNet trained by SimCLR, and ResNet-50
with ReLU activation. The confusion matrices confirm the results
and show the success of the SSA-Net. The Receiver Operating
Characteristic Curve (ROC) of the ResNet+ReLU, ResNet+AttAct, and
SSA-Net (SimCLR+AttAct) are also plotted in Fig. 6. Fig. 7 visualizes
the heatmaps of ResNet-50 with SImCLR and attentional activation on
the disease classes.

Table V provides experimental results for 5-fold cross-validation
on the KACD dataset. The proposed SSA-Net model demonstrated
outstanding accuracy, achieving a mean precision score of 99.72%.
This reflects its capability to correctly identify positive cases within
the dataset. Additionally, it achieved a mean recall rate of 99.75%,
indicating its effectiveness in capturing actual positive instances and
minimizing false negatives. The F1-score, which balances precision and
recall, was an outstanding 99.72%, highlighting the robustness of our
model’s performance. Furthermore, the model excelled in precision,
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with a mean score of 99.7%, showcasing a low number of false positive
predictions and demonstrating strong capability in predicting positive
cases correctly.

TABLE V. EXPERIMENTAL RESULTS OF 5-FOLD CROSS-VALIDATION

Fold No. Accuracy Precision F1-Score Recall
1 99.76% 99.71% 99.76% 99.84%
2 99.68% 99.68% 99.68% 99.68%
3 99.75% 99.74% 99.75% 99.75%
4 99.65% 99.65% 99.65% 99.65%
5 99.77% 99.71% 99.77% 99.85%

B. Comparison With Other Models

To assess the performance of the proposed SSA-Net, we compare
the results with other state-of-the-art (SOA) neural models. The SOA
models include SADNN [32], DCNN [33], DenseNet [34], MSD-Net
[35], MS-RLM [36], MM3D-DL [37], ensemble CNN-LSTM [38], ADG-
Net [39], PDL [40], and PL-Net [41].

SADNN is a model for early AD detection using a 3D-residual
attention DNN for end-to-end learning from MRI scans. The model
introduces a residual self-attention DNN to capture local, global, and
spatial information, improving detection performance. DCNN uses a
convolutional neural network for AD classification from MRI scans.
DenseNet proposes a hippocampus analysis model that combines
global and local features using densely connected convolutional
networks and shape analysis for AD detection. MSD-Net proposes a
multi-view separable pyramid network, which learns representations
from axial, coronal, and sagittal scan views for AD classification.
MS-RLM proposes a multi-scale region classification block which
adaptively combines multi-scale regions and drives decision fusion.
MM3D-DL proposes a multimodal approach that extracts features
without loss using a depthwise separable convolution block without
an activation function.

TABLE VI. COMPARISON AGAINST STATE-OF-THE-ART (SOA) MODELS.

Table VI provides a comprehensive performance overview of
various deep learning models in classifying neurodegenerative
diseases across different tasks and modalities (MRI and PET).
Each model’s effectiveness is evaluated through metrics including
accuracy, recall, and Fl-score. The proposed SSA-Net in this study
stands out with excellent performance metrics (99.70% accuracy,
99.80% recall, and 99.70% F1-score) when utilizing MRI scans from
regions of interest (ROI) to distinguish between non-demented (ND)
and Alzheimer’s Disease (AD). This underlines the robust ability of
the proposed model to accurately classify disease states, important
for the early detection of AD.

On the other hand, models such as MS-RLM and MM3D-DL
exhibit varying performance depending on the task and modality
used. MS-RLM achieves high accuracy (98%), balanced recall (96%),
and F1-score (96%) when using PET data across all regions to classify
ND vs AD. This indicates PET imaging’s effectiveness in capturing
disease markers across brain areas, contributing to accurate disease
classification. MM3D-DL, employing both MRI and PET modalities
together (MRI+PET), shows mixed results across tasks. For instance, it
achieves 84% accuracy, 76%recall, and 81% F1-score in distinguishing
Moderate (MOD) vs Mild Dementia (MD) using combined imaging
data from all brain regions. This reflects the complexity of integrating
multimodal data for disease classification, where combining MRI
and PET provides complementary information but also introduces
challenges in data integration and model training.

To assess if there are statistically significant differences in the SSA-
Net performance between different models, we conducted ANOVA
tests. In Table VII, the symbol (4) signifies a significant difference
with a 95% confidence level. The statistical analysis revealed that
the results of the proposed SSA-Net model are indeed significant
(p < 0.0001), supporting the null hypothesis (+). Similarly, the
benchmark models also yielded significant results (p < 0.0001)
in support of the null hypothesis. Table VIII further examines the

« »

—” INDICATES NO RESULTS IN THE ORIGINAL STUDY

Model Optimizer Architecture Modality MRI Region Accuracy Recall F1-Score Dataset
SADNN AdamW 3D Residual CNN MRI All 91.00 91.00 - ANDI
DCNN Adam 3D Deep CNN MRI ROI - 88.00 - ANDI
DenseNet Adam Dense CNN MRI ROI 92.00 94.00 - ANDI
MSD-Net SGD Multi-View CNN PET ROI 93.00 91.00 - ANDI
MS-RLM Adam Multi-Scale CNN PET All 98.00 96.00 96.00 ADNI
MM3D-DL Adam Multimodal CNN MRI+PET All 94.00 99.00 93.00 ANDI
CNN-LSTM Adam Conv1CNN+LSTM MRI ROI 98.75 98.79 98.81 KACD
ADG-Net Adam Deep CNN MRI All 99.61 99.53 99.61 KACD
PDL Adam Pre-Train CNN MRI All 99.30 99.01 99.01 KACD
PL-Net Adam CNN Backbone MRI All 99.50 99.80 — KACD
SSA-Net (Ours) AdamW ResNet50+SimCLR MRI All 99.70 99.80 99.70
TABLE VII. ANOVA STATISTICAL ANALYSIS WITH A 95% CONFIDENCE INTERVAL
Accuracy Recall F1-Score
Model
p-value Ho p-value Ho p-value Ho
SADNN <0.0024 +) <0.0011 +) <0.0019 +)
DCNN <0.0028 *) <0.0015 +) <0.0020 +)
DenseNet <0.0010 (+) <0.0012 (+) <0.0012 (+)
MSD-Net  <0.0015 +) <0.0011 +) <0.0012 +)
MS-RLM <0.0001 +) <0.0001 +) <0.0001 +)
MM3D-DL  <0.0002 +) <0.0009 +) <0.0009 )
SSA-Net <0.0001 +) <0.0001 +) <0.0001 )
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performance of SSA-Net against other CNN models on the accuracy,
Fi1-score, recall, AUC, and parameter count. The parameter count
provides the computational complexity of the SSA-Net.

TABLE VIII. PERFORMANCE OF SSA-NET AGAINST OTHER CNN MODELS

Model Para (M) | Accuracy | Precision | Recall AUC
MobileNetV2 224M 98.74 99.39 99.37 99.95
DenseNet121 10M 84.39 64.98 53.14 80.83

AlexNet 60M 83.75 62.94 60.01 77.64
InceptionV2 154M 94.39 94.49 94.49 99.49
ResNet50 25M 84.88 77.84 70.74 80.64
SSA-Net 25.5M 99.72 99.70 99.75 99.98

V. CONCLUSION

This study introduces a self-supervised attentive feature learning
network (SSA-Net) for classifying Alzheimer’s disease. The method
enhances model accuracy and reliability by combining self-supervised
learning and attention mechanisms. The backbone ResNet-50 model
with attentive activation in the encoder is used instead of ReLU,
improving focus on relevant features. SInCLR, a self-supervised
learning framework, is employed to learn high-quality visual
representations in brain MRI scans without labels. On the Kaggle
Alzheimer’s classification dataset (KACD) for training and testing, the
proposed SSA-Net achieved 99.7% classification accuracy, surpassing
the accuracy (98.1%) of ResNet-50. The experiments are conducted to
examine the proposed SSA-Net using Accuracy, Precision, F1-score,
Recall, Error rate, and False-Positive Rate (FPR) across non-demented
(ND), very mild demented (VMD), mild demented (MD), and moderate
demented (MOD) categories. The results conclude highly accurate
Alzheimer’s Disease detection and classification across all classes:
mild demented (99.84%accuracy), moderate demented (100% accuracy),
non-demented (99.77% accuracy), and very mild demented (99.77%
accuracy). They also demonstrate minimal error rates (ranging from
0% to 0.23%) and low false positive rates (ranging from 0% to 0.31%),
underscoring the model’s robustness in accurately distinguishing
between different dementia stages. These findings emphasize the
importance of early detection and effective procedures, supporting
the potential of deep learning models in improving the detection of
AD. The results concluded that with ReLU activation, the model’s
performance declined across all metrics and classes, except for the
moderate dementia class. The accuracies of SSA-Net increased by
1.26% (non-demented), 1.54% (very mild demented), and 0.39% (mild
demented) over ResNet+ReLU. The confusion matrices and ROC curves
further confirm the excellent performance of SSA-Net. On 5-fold cross-
validation on the KACD dataset, SSA-Net achieved a mean precision
score of 99.72%, a mean recall rate of 99.75%, and a mean F1-score of
99.72%. Overall, SSA-Net shows better performance, emphasizing the
potential of deep learning models in enhancing the accuracy of AD
detection and classification, supporting their application in clinical
settings for early detection and effective treatment.

In future studies, the investigation can combine SSA-Net with
clinical data, such as demographics of patients, genetic information,
and cognitive tests to improve the prediction of the model. Additionally,
we can validate the performance of SSA-Net on additional diverse
datasets to ensure its generalization and robustness across different
imaging conditions.
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