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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that leads to memory loss and a decline 
in cognitive abilities. It primarily affects older adults and is the most common cause of dementia. Using deep 
learning, models can analyze brain imaging scans to detect specific patterns and biomarkers associated with 
the disease. Supervised learning models achieve high accuracy rates, but they require a large amount of data 
sets and labelled medical images. Self-supervised learning can achieve high accuracy rates with fewer training 
data. This study proposes a self-supervised attentive feature learning network (SSA-Net) for classifying 
Alzheimer’s disease. The proposed approach leverages self-supervised learning and attention mechanisms to 
enhance the accuracy and reliability of the classifying model. We employ ResNet-50, incorporating attentive 
activation, which replaces the ReLU activation, improving the ability of the neural model to focus on the most 
relevant features in the input medical images. We use SimCLR (Simple Framework for Contrastive Learning of 
Visual Representations) with the ResNet-50 backbone as a self-supervised learning framework that effectively 
learns high-quality visual representations in brain MRI (Magnetic Resonance Imaging) scans without labelling. 
We used the Kaggle Alzheimer’s classification dataset (KACD) containing brain MRI scans for training and 
testing. Experimental results on the KACD dataset show that the proposed attentive self-supervised ResNet50 
reached 99.7% classification accuracy compared to the traditional ResNet50 with 98.1% accuracy. Evaluation 
metrics show the effectiveness of the proposed SSA-Net for the efficient classification of Alzheimer’s disease.
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I.	 Introduction

A lzheimer disease is a progressive neurodegenerative disorder 
that leads to the gradual deterioration of cognitive abilities and 

memory. It stands as the leading cause of dementia in older adults. 
Classifying AD into stages such as non-demented, very mildly 
demented, mildly demented, and moderately demented is essential. 
This classification allows for personalized medical care and effective 
monitoring of disease progression. The early and exact identification 
of the AD stage enables healthcare providers to tailor interventions 
more effectively, potentially slowing the progression of the disease. AD 
causes extensive neuronal damage, disrupting associations with critical 
brain regions like the cerebral cortex and hippocampus. However, the 
exact reason for Alzheimer’s remains unidentified; it is often associated 
with the accumulation of neurofibrillary tangles and amyloid plaques 

[1]. The report discussing the increasing apprehensions regarding 
the growing trend of dementia across the world [2]. The number of 
dementia cases is predicted to increase from 57.4M to 152.8M by 2050. 
The World Health Organization (WHO) documents that there are 10 
million new dementia cases annually worldwide, which means one 
new case every 3.2 seconds. These reports indicate a notable rise in 
dementia over time, emphasizing effective systems to manage this 
growing challenge.

Classification of AD using deep neural networks (DNNs) is an 
emerging domain that leverages the ability of artificial intelligence 
to improve detection accuracy. DNN models, especially convolutional 
neural networks (CNNs), have demonstrated significant potential in 
analyzing medical imaging data such as MRI (Magnetic Resonance 
Imaging) and PET (Positron Emission Tomography) scans. MRI 
provides high-resolution structural images of the brain, helping 
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identify atrophy patterns typical of AD, while PET scans, using tracers 
like 18F-FDG, reveal metabolic activity indicative of the disease [3], 
[4]. These models are trained on large datasets to detect fine changes 
in brain structure and function, offering a non-invasive, automated 
approach to early detection and progression monitoring. Integrating 
DNNs in AD research improves early detection and personalized 
treatment procedures. MRI is considered the most advanced and 
precise radiological technique to examine the brain’s structural 
transitions. MRI captures images from different angles, typically in 
axial, sagittal, and coronal planes, providing comprehensive insights 
into the brain’s anatomy and potential abnormalities [5]. Detecting 
alterations in the corpus callosum is possible through axial plane MRI 
scans. This imaging technique is valuable for differentiating between 
various phases of AD [6], [7].

Recently, countless studies have examined the potential use of 
DNNs in detecting AD. Classes of the convolutional neural networks 
(CNN), such as, ResNet [8], [9], VGG [10], AlexNet [11], GoogleNet 
[12], and recurrent neural networks (RNN) [13], are considered to 
improve the AD detection. A study [14] introduced the model to 
classify four dementia stages—very mild dementia, mild dementia, 
moderate dementia, and non-dementia. Dementia image features 
are effectively visualized by employing the occlusion sensitivity 
map alongside multifocal ground-glass opacities. Another study 
[15] devised a model that combines Inception and ResNet, achieving 
significant improvements against standalone ResNet and Inception. 
A study [16] classified distinct AD stages: cognitively normal (not-
demented), early-stage (very mild-demented), later-stage (mild-
demented), and AD (moderate-demented). Another study employed 
different CNN models, including ResNet-50, DenseNet-201, VGG-
16, and AlexNet to develop a hybrid model based on ResNet50 with 
additional layers. The proposed hybrid model showed improved 
performance in detecting Alzheimer’s disease. Another study [17] 
formulated an automated neural detection approach operating on the 
sagittal plane of the brain MRI. The study operated transfer learning, 
utilizing ResNet for feature extraction and a SVM classifier for AD 
detection. Another study [18] proposed an Alzheimer’s detection 
using a pre-trained AlexNet for feature extraction. These features 
are then classified using different classifiers, including KNN, random 
forest, and SVM. A study [19] presents a multistage CNN model to 
detect AD. The framework has developed a 26-layer convolutional 
neural network specifically designed to distinguish between 
individuals without dementia and those with dementia. The model is 
reutilized via transfer learning to sub-classify dementia into severe, 
moderate, and mild stages. Exploiting the fixed weights, transfer 
learning has facilitated precise sub-classification of AD. In another 
study [20] a CNN architecture is formulated that utilized MRI data 
for AD classification. The network consists of two CNN models with 
different filter sizes and pooling layers, concatenated in a classification 
layer. Another study [21] uses MobileNet to classify five AD stages. 
Another study [22] employs a combination of deep CNN and ensemble 
learning, specifically MobileNetV2 and LSTM, using magnetic 
resonance images (MRI). In another study [23], a particle swarm 
optimization-based model is proposed to optimize hyperparameters 
for classifying Alzheimer’s disease severity. The CNN model achieved 
a highly accurate classification of Alzheimer’s disease, achieving 
99.53% accuracy and a 99.63% F1-score. The study [24] introduces four 
different models for classifying manifold dementia stages including 
custom-built CNNs, VGG-16 using extra convolutional layers, graph 
convolutional network, and a hybrid of CNN and graph convolutional 
network. CNNs are first formed and their flattened layer outputs 
are subsequently fed to the graph convolutional network classifier. 
Another recent study [25] presents an architecture combining Multi-
View Separable Residual CNNs, capable of processing total volumes 

with spatial complexity related to 2D CNNs. The model integrates 
voxel spatial relationships and achieves a significant 50% reduction 
in memory usage compared to 3D CNNs. Evaluated on a dataset of 
540 patients (191 CN, 145 EMCI, 122 LMCI, 82 AD, 397 SMCI, and 61 
PMCI), the model achieved accuracies of 86.97% for CN vs. EMCI vs. 
LMCI vs. AD and 95.73% for SMCI vs. PMCI classifications. A study 
[26] examines reinforcement learning to classify AD.

For AD classification, integrating ResNet architectures with self-
attention can be extremely beneficial. ResNet can capture complex 
hierarchical features from MRI scans for classifying fine structural 
changes signifying AD stages. By using pretrained or fine-tuned 
ResNet models, the network can efficiently extract features that 
signify early signs of AD. A study [27] introduces an AlzhiNet 
model formulated for detecting AD using 3D volumetric MRI data 
for multi-class classification. AlzhiNet incorporates self-attention to 
differentiate between stages such as mild cognitive impairment (MCI) 
and AD, with cognitively normal patients helping as the control group. 
A study suggested using a self-attention method to divide the brain 
into 90 regions by employing automatic anatomical labelling [28]. 
The next step involves calculating intermediate fractional anisotropy 
scores for each pair of brain areas. These scores are then used to 
construct a detailed and complex brain network. This network was 
then fed to the graph convolutional neural network, which integrated 
a self-attention pooling process. Additionally, the study leveraged the 
number of voxels with fibers passing through each brain region as 
node features. The researchers assessed various preprocessed brain 
networks and node features for their classification performance and 
reported a remarkable accuracy rate of 87.5% in distinguishing between 
individuals with Alzheimer’s disease (AD) and normal controls (NC). 
A study [29] employed the ResNet50 architecture, modified to include 
self-attention for extracting meaningful features. The process initiated 
with the optimization of both the hyperparameters and the model 
using Bayesian optimizers. Once optimized, the model was utilized to 
extract features, which were then further optimized through a self-
attentional approach. The most effective features were selected and 
fed into the classifiers for the ultimate classification task. As a result 
of these experiments, a significant improvement was achieved with an 
accuracy of 99.9%.

This study uses the Simple Framework for Contrastive Learning of 
Visual Representations (SimCLR) framework to train an attentional 
ResNet-50 model in a self-supervised learning manner. Since 
unsupervised learning operates without explicit class labels during 
training, this study formulates a neural model to accurately classify 
AD stages from MRI images as cognitively normal (non-dementia), 
early-stage (very mild-dementia), later-stage (mild-dementia), and AD 
(moderate-dementia). During the training process using the SimCLR 
learning framework, all input data points exclusively contain MRI 
images without label information. For ResNet-50, the architecture 
largely remains unchanged in terms of layer structure (convolutional 
layers and skip connections), but replaces ReLU activation with 
an attentive activation (AttAct) [30]. Attentive activation focuses 
on important features in the MRI images, allowing the model to 
selectively emphasize relevant information while de-emphasizing less 
relevant features. This potentially leads to more learned discriminative 
features, improving the ability of the model to determine AD classes 
(non-dementia, very mild dementia, mild dementia, and moderate 
dementia). The model learns to extract features that capture high-level 
abstract information regarding the input MRI images, guided by the 
contrastive loss function. After training on the unlabeled MRI images, 
the SimCLR framework produces learned feature representations 
(embeddings) of these images. Once the model learns feature 
representations from unlabeled images, the representations are fine-
tuned for AD classification. The contributions of the study are twofold.
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First, we employ the SimCLR framework to train an attentional 
ResNet-50 model using a self-supervised learning approach that focuses 
on learning effective representations from unlabeled MRI images. The 
SimCLR applies data augmentation to create multiple views of MRI 
images, which helps the model learn robust features that are consistent 
with interpretations in the input data. Secondly, for ResNet-50, we 
make a few architectural changes and replace standard ReLU activation 
with an attentive activation. Unlike ReLU, which applies a fixed non-
linearity, attentive activation adaptively adjusts the responses based on 
the input and context. This adaptability leads to more robust feature 
representations that are adjusted to the specific characteristics of MRI 
images, potentially improving generalization. The remaining paper is 
arranged as follows: Section II provides a detailed description of the 
proposed model (SSA-Net). The experimental setup is explained in 
Section III. Section IV presents the experimental results and discussions. 
Finally, Section V concludes the study.

II.	 Methodology

We utilize the SimCLR framework to train an attentional ResNet-50 
model through a self-supervised learning method aimed at deriving 
effective representations from unlabeled MRI images. SimCLR 
employs data augmentation to generate multiple views of MRI images, 
enabling the model to learn robust features consistent with the input 
data interpretations. For the ResNet-50 model, we introduce several 
architectural modifications and replace the standard ReLU activation 
with an attentive activation [31]. Unlike ReLU, which applies a fixed 
non-linearity, attentive activation adaptively adjusts responses based 
on input and context. This adaptability results in more robust feature 
representations. The network is further fine-tuned using SimCLR. 
This indicates that pre-trained weights are used as initial weights for 
training, where input data includes label information. Fig. 1 depicts the 
proposed methodology.

A.	Training Protocol
SimCLR learns representations by maximizing the similarity 

between different augmented views of the same MRI samples using 
a contrastive loss function in the latent space. As illustrated in Fig. 
1, the framework contains four components. First, a stochastic data 
augmentation module randomly transforms the given MRI image, 
resulting in two correlated views of the same MRI sample,  and , 
which are considered a positive pair. In this study, we apply simple 
random cropping augmentation. Secondly, the ResNet-50 neural 
network base encoder f (⋅) extracts feature representations from the 
augmented MRI samples; i.e., 

	 (1)

where hi ∈ ℝd represents the outputs after the average pooling layer.

After this, the representations are then processed by a projection 
head g (⋅) to map them into the space where the contrastive loss is 

applied. A single hidden-layered MLP is used for this projection, 
which is given as:

	 (2)

	 (3)

where zi denotes the projected feature used for computing the 
contrastive loss and σ is the ReLU non-linearity. Following the 
projection head, a contrastive loss function is applied for contrastive 
prediction. Given a set  that includes the positive pair samples 

 and , the contrastive prediction aims to identify  in  for 
a given . We follow the standard methodology for computing the 
contrastive loss. The loss for the positive pair samples (i, j) can be 
defined as:

	 (4)

where 1[m≠i] ∈ {0, 1} is an indicator function and τ denotes the 
temperature parameter. The final loss function is computed over all 
positive pairs in a mini-batch. This loss is known as the normalized 
temperature-scaled cross-entropy loss.

B.	Model: Attentional ResNet-50
ResNet-50 is a deep convolutional neural network that has been 

effectively utilized in Alzheimer’s disease analysis to improve the 
accuracy of early detection and progression prediction. By leveraging 
a 50-layer architecture, ResNet-50 captures complex patterns and fine 
changes in brain MRI images. The model’s ability to perform residual 
learning allows it to address the vanishing gradient problem, ensuring 
robust feature extraction even in deep layers. This capability is 
important for identifying the fine structural and functional alterations 
associated with Alzheimer’s disease, thus aiding in early intervention 
and personalized treatment planning.

We use ResNet-50 as the base model with a few architectural 
changes and replace the standard ReLU activation with an attentive 
activation (AttAct). Attention and activation are distinct functions, 
but both are nonlinear gating functions. Drawing on this similarity, 
the ResNet-50 encoder combines attention and activation as a single 
approach, called attentional activation (AttAct).

The local channel attention block in AttAct enables simultaneous 
nonlinear activation and feature refinement. This block collects 
local point-by-point cross-channel feature contexts, improving the 
interpretation and performance of ResNet-50. Fig. 2 demonstrates the 
architecture of the AttAct block integrated into ResNet-50 for a fully 
attentional ResNet-50 backbone.

When considering a particular intermediate feature map denoted 
as f, the transformation brought about by attention can be expressed 
as follows:

	 (5)

Input MRI Scan

Tranformed
Samples

Representation hi Projection MLP Zi

ZjProjection MLP

Maximize Agreement

Representation hj

AD Classification

Data
Augmentation

A�entional
ResNet-50
Enconder

A�entional
ResNet-50
Enconder

Fig. 1. Proposed Methodology with unsupervised feature learning using attentional ResNet-50.
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where ⊗ represents element-wise multiplication and AttG( f ) 
denotes the attention-weighted feature map created via attention 
gating. The effectiveness of the attention gating relies significantly on 
the complete feature map f. At any given position (i, j, k), Equation (5) 
can be expressed in scalar form as:

	 (6)

where g performs complex gating by aggregating feature contexts 
for the position (i, j, k), yielding attention weights for F[c, j, k].

According to [31], activation can also be represented as a gating 
function:

	 (7)

In a typical ReLU activation function, the scalar function g acts 
as an indicator by determining whether the input is greater or less 
than zero. The AttAct, aside from introducing non-linearity, enables 
ResNet to carry out context-aware, layer-wise, and adaptive feature 
refinement. In this study, AttAct is implemented as the activation 
function throughout the entire ResNet architecture.

AttAct utilizes point-by-point convolutions to incorporate local 
attention. These convolution operations allow for the exploration of 
cross-channel relationships in a point-by-point style while efficiently 
utilizing only a small set of training parameters. The attentional 
activation, as in Fig. 3, empowers ResNet to activate and refine 
selective features element-wise, leveraging point-by-point cross-
channel correlations. The attentional weights Att( f ) are calculated 
using a bottleneck configuration to reduce the number of parameters:

	 (8)

where δ and σ represent the ReLU and sigmoid activation 
functions, and BN refers to batch normalization. The kernel sizes are  
PWConv1 = (C/r × C × 1 × 1) and PWConv2 = (C × C/r × 1 × 1), where 
r is the channel reduction ratio.

The function Att( f ) has the same shape as the input feature map, 
and the resultant activated features are obtained via element-wise 
multiplication:

	 (9)

Instead of using the traditional ReLU activation function, AttAct 
selectively activates and refines features in the ResNet-50 layers.

III.	Experiments and Settings

A.	Dataset and Data Splitting
This study uses the Kaggle Alzheimer’s classification Dataset 

(KACD), which contains brain MRI scans and was obtained from a 
challenge on the Kaggle. The dataset consists of 6400 MRI samples 

(5121 training and 1279 testing samples). The dataset is divided into 
non-demented, very mild demented, mild demented, and moderate 
demented. The scans are collected in the axial plane with (128× 128) 
pixels dimensions, as shown in Fig. 4. The non-demented class indicates 
normal cognition, whereas the very mild demented class indicates 
an early stage of disease with fine symptoms. The mild demented 
describes the stage of Alzheimer’s disease at which symptoms are 
noticeable and can be identified. In the moderate demented class, a 
patient encounters difficulty in thinking, reasoning, movement, and 
day-to-day tasks. Table I provides the details of the KACD. Cross-
validation is a useful approach used to evaluate the performance of 
a model on new, unseen data, which helps generalize the model for 
independent datasets. This study utilizes a k-fold cross-validation 
approach with k set to 5. The process begins by splitting the dataset 
into a training set (80%) and a testing set (20%). Following the initial 
assessment, k-fold cross-validation is implemented by dividing the 
training set into k subsets. Finally, the performance of the model is 
evaluated on a 20% test set, which is not used for either training or 
cross-validation.

(a) (b)

(c) (d)

Fig. 4. MRI images. (A) Non-demented, (B) Very Mild, (C) Mild, and (D) 
Moderate.
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TABLE I. Details of the KACD With MRI Brain Images

Class Name Train Set Test Set Total

Non-Demented 2560 640 3200

Very Mild Demented 1792 448 2240

Mild Demented 717 179 896

Moderate Demented 52 12 64

Total Class 5121 1279 6400

B.	Network and Performance Metrics
ResNet-50 is a deep convolutional neural network (DCNN), and the 

architecture details are given in Table II. In the network configuration, the 
training is set to run for 200 epochs utilizing Stochastic Gradient Descent 
(SGD) with Sharpness-Aware Minimization (SAM) as the optimization 
strategy. The loss function employed is the normalized temperature-
scaled cross-entropy, which is designed to improve model performance 
by addressing the issue of overconfidence in class predictions.

TABLE II. The ResNet-50 Backbone Network Architecture Where ReLU 
Is Replaced With Attentional Activation (AttAct)

Layer Output 50-Layers Description

Conv1 112 𝗑 112 7 𝗑 7Conv, 64

Conv2 56 𝗑 56 [(1 𝗑 1, 64), (3 𝗑 3, 64), (1 𝗑  1, 256)] 𝗑 3

Conv3 28 𝗑 28 [(1 𝗑 1, 128), (3 𝗑 3, 128), (1 𝗑  1, 512)] 𝗑 4

Conv4 14 𝗑 14 [(1 𝗑 1, 256), (3 𝗑 3, 256), (1 𝗑  1, 1024)] 𝗑 6

Conv5 7 𝗑 7 [(1 𝗑 1, 512), (3 𝗑 3, 512), (1 𝗑  1, 2048)] 𝗑 3

− 1 𝗑 1 Avg Pool, 1000d Fully Connected, Softmax

FLOPs 3.8 𝗑 109

The learning rate is initialized at 0.001, with a momentum of 0.9 to 
help accelerate the training process and improve convergence. The ρ 
parameter is set to 2, controlling the sharpness penalty in the SAM 
optimizer. Additionally, weight decay is applied with a value of 1 × 10-8 
to regularize the model and prevent overfitting. The optimizer used for 
training the network is Adam, known for its adaptive learning rate 
and weight decay, which further enhances the training stability and 
performance of the ResNet-50 model. β is the temperature parameter 
which controls the sharpness of the similarity distribution, with a 
value fixed to 0.1. The models are implemented using Python and 
PyTorch, running on an Intel(R) Core(TM) i5-1135G7 CPU @ 2.40GHz 
(8 CPUs) processor with 8GB RAM and an NVIDIA GeForce GTX 960. 
Fig. 5 displays the learning curves for the AD stage classification task 
using the KACD dataset, showing no signs of overfitting throughout 
the training process.

Key metrics for the performance evaluation include Accuracy 
(ACC), Sensitivity (Recall), Precision, F1-score, and Area Under Curve 
(AUC). These metrics present comprehensive details of a model’s 
performance. The ACC, Recall, and Precision metrics are defined as:

	 (10)

	 (11)

	 (12)

where TP, TN, FP, and FN represent the true positives, true negatives, 
false positives, and false negatives, respectively.

IV.	Results and Discussions

We present the results of the proposed Alzheimer’s Disease 
classification model, evaluated using Accuracy, Recall, F1-score, and 
Precision. The performance of our model is compared to other DNN-
based models for Alzheimer’s Disease classification. To determine the 
best accuracy, we employ 5-fold cross-validation.

A.	Overall Performance
Table III demonstrates the results of the proposed SSA-Net. This 

model involves training ResNet-50 using the SimCLR learning 
framework and replacing the standard ReLU with attentional activation. 
The model’s performance is evaluated based on Accuracy, Precision, 
F1-score, Recall, Error rate, and False-Positive Rate (FPR) across non-
demented (ND), very mild demented (VMD), mild demented (MD), and 
moderate demented (MOD).

TABLE III. Performance of the Proposed SSA-Net on Alzheimer’s 
Disease Detection and Classification

Metric ND VMD MD MOD

Accuracy 99.77% 99.77% 99.84% 99.97%

Precision 99.69% 99.78% 99.44% 99.97%

F1-Score 99.76% 99.69% 99.44% 99.97%

Recall 99.84% 99.60% 99.44% 99.97%

Error Rate 0.0023 0.0023 0.0016 0.00

FPR 0.0031 0.0012 0.0009 0.00

The results indicate highly accurate Alzheimer’s Disease detection 
and classification across all classes: mild demented (99.84% accuracy, 
99.44% precision, 99.44% recall, and 99.44% F1 score), moderate 
demented (100% accuracy, precision, recall, and F1 score), non-
demented (99.77% accuracy, 99.69% precision, 99.84% recall, and 99.76% 
F1 score), and very mild demented (99.77% accuracy, 99.78% precision, 
99.56% recall, and 99.67% F1 score). These metrics demonstrate 
minimal error rates (ranging from 0% to 0.23%) and low false positive 
rates (ranging from 0% to 0.31%), underscoring the model’s robustness 
in accurately distinguishing between different dementia stages. 
These findings indicate the critical importance of early detection and 
effective procedures in clinical settings, supporting the potential of 
deep learning models in improving the detection of AD accuracy.
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Fig. 5. Learning curves on KACD dataset. The training occurs to be stable even on limited MRI data.
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To demonstrate the influence of attentional activation in the 
proposed model, we trained the ResNet-50 model using the SimCLR 
learning framework and the standard ReLU activation. The results 
indicated that with ReLU activation, the model’s performance 
declined across all metrics and classes, except for the moderate 
dementia class. Table IV presents the results of the model without 
attentional activation. The accuracy of SSA-Net is increased by 1.26% 
(non-demented), 1.54% (very mild demented), 0.39% (mild demented), 
and both models perform equally well for the moderate demented 
category. The F1-score of SSA-Net has seen an increase of 1.23% for 
the non-demented category, 2.13% for very mild demented, and 1.41% 
for mild demented. Both models perform equally well for the moderate 
demented category.

TABLE IV. Performance of ResNet-50 With Attentive Activation 
Replacing ReLU on Alzheimer’s Disease Detection and Classification

Metric ND VMD MD MOD

Accuracy 98.51% 98.28% 99.45% 99.96%

Precision 97.41% 98.90% 98.86% 99.96%

F1-Score 98.53% 97.56% 98.03% 99.96%

Recall 99.68% 96.25% 97.21% 99.96%

Error Rate 0.0148 0.0172 0.0055 0.00

FPR 0.0266 0.0060 0.0018 0.00

Fig. 6 shows an analysis of the confusion matrix for three deep 
learning models: SSA-Net, ResNet trained by SimCLR, and ResNet-50 
with ReLU activation. The confusion matrices confirm the results 
and show the success of the SSA-Net. The Receiver Operating 
Characteristic Curve (ROC) of the ResNet+ReLU, ResNet+AttAct, and 
SSA-Net (SimCLR+AttAct) are also plotted in Fig. 6. Fig. 7 visualizes 
the heatmaps of ResNet-50 with SimCLR and attentional activation on 
the disease classes.
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Fig. 7. Visualization of the heatmaps on the disease classes.

Table V provides experimental results for 5-fold cross-validation 
on the KACD dataset. The proposed SSA-Net model demonstrated 
outstanding accuracy, achieving a mean precision score of 99.72%. 
This reflects its capability to correctly identify positive cases within 
the dataset. Additionally, it achieved a mean recall rate of 99.75%, 
indicating its effectiveness in capturing actual positive instances and 
minimizing false negatives. The F1-score, which balances precision and 
recall, was an outstanding 99.72%, highlighting the robustness of our 
model’s performance. Furthermore, the model excelled in precision, 
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with a mean score of 99.7%, showcasing a low number of false positive 
predictions and demonstrating strong capability in predicting positive 
cases correctly.

TABLE V. Experimental Results of 5-Fold Cross-Validation

Fold No. Accuracy Precision F1-Score Recall
1 99.76% 99.71% 99.76% 99.84%
2 99.68% 99.68% 99.68% 99.68%
3 99.75% 99.74% 99.75% 99.75%
4 99.65% 99.65% 99.65% 99.65%
5 99.77% 99.71% 99.77% 99.85%

B.	Comparison With Other Models
To assess the performance of the proposed SSA-Net, we compare 

the results with other state-of-the-art (SOA) neural models. The SOA 
models include SADNN [32], DCNN [33], DenseNet [34], MSD-Net 
[35], MS-RLM [36], MM3D-DL [37], ensemble CNN-LSTM [38], ADG-
Net [39], PDL [40], and PL-Net [41].

SADNN is a model for early AD detection using a 3D-residual 
attention DNN for end-to-end learning from MRI scans. The model 
introduces a residual self-attention DNN to capture local, global, and 
spatial information, improving detection performance. DCNN uses a 
convolutional neural network for AD classification from MRI scans. 
DenseNet proposes a hippocampus analysis model that combines 
global and local features using densely connected convolutional 
networks and shape analysis for AD detection. MSD-Net proposes a 
multi-view separable pyramid network, which learns representations 
from axial, coronal, and sagittal scan views for AD classification. 
MS-RLM proposes a multi-scale region classification block which 
adaptively combines multi-scale regions and drives decision fusion. 
MM3D-DL proposes a multimodal approach that extracts features 
without loss using a depthwise separable convolution block without 
an activation function.

Table VI provides a comprehensive performance overview of 
various deep learning models in classifying neurodegenerative 
diseases across different tasks and modalities (MRI and PET). 
Each model’s effectiveness is evaluated through metrics including 
accuracy, recall, and F1-score. The proposed SSA-Net in this study 
stands out with excellent performance metrics (99.70% accuracy, 
99.80% recall, and 99.70% F1-score) when utilizing MRI scans from 
regions of interest (ROI) to distinguish between non-demented (ND) 
and Alzheimer’s Disease (AD). This underlines the robust ability of 
the proposed model to accurately classify disease states, important 
for the early detection of AD.

On the other hand, models such as MS-RLM and MM3D-DL 
exhibit varying performance depending on the task and modality 
used. MS-RLM achieves high accuracy (98%), balanced recall (96%), 
and F1-score (96%) when using PET data across all regions to classify 
ND vs AD. This indicates PET imaging’s effectiveness in capturing 
disease markers across brain areas, contributing to accurate disease 
classification. MM3D-DL, employing both MRI and PET modalities 
together (MRI+PET), shows mixed results across tasks. For instance, it 
achieves 84% accuracy, 76%recall, and 81% F1-score in distinguishing 
Moderate (MOD) vs Mild Dementia (MD) using combined imaging 
data from all brain regions. This reflects the complexity of integrating 
multimodal data for disease classification, where combining MRI 
and PET provides complementary information but also introduces 
challenges in data integration and model training.

To assess if there are statistically significant differences in the SSA-
Net performance between different models, we conducted ANOVA 
tests. In Table VII, the symbol (+) signifies a significant difference 
with a 95% confidence level. The statistical analysis revealed that 
the results of the proposed SSA-Net model are indeed significant  
(p < 0.0001), supporting the null hypothesis (+). Similarly, the 
benchmark models also yielded significant results (p < 0.0001)
in support of the null hypothesis. Table VIII further examines the 

TABLE VI. Comparison Against State-of-the-art (SOA) Models. “—” Indicates No Results in the Original Study

Model Optimizer Architecture Modality MRI Region Accuracy Recall F1-Score Dataset
SADNN AdamW 3D Residual CNN MRI All 91.00 91.00 — ANDI

DCNN Adam 3D Deep CNN MRI ROI — 88.00 — ANDI

DenseNet Adam Dense CNN MRI ROI 92.00 94.00 — ANDI

MSD-Net SGD Multi-View CNN PET ROI 93.00 91.00 — ANDI

MS-RLM Adam Multi-Scale CNN PET All 98.00 96.00 96.00 ADNI

MM3D-DL Adam Multimodal CNN MRI+PET All 94.00 99.00 93.00 ANDI

CNN-LSTM Adam Conv1CNN+LSTM MRI ROI 98.75 98.79 98.81 KACD

ADG-Net Adam Deep CNN MRI All 99.61 99.53 99.61 KACD

PDL Adam Pre-Train CNN MRI All 99.30 99.01 99.01 KACD

PL-Net Adam CNN Backbone MRI All 99.50 99.80 — KACD

SSA-Net (Ours) AdamW ResNet50+SimCLR MRI All 99.70 99.80 99.70

TABLE VII. ANOVA Statistical Analysis With a 95% Confidence Interval

Model
Accuracy Recall F1-Score

p-value H0 p-value H0 p-value H0
SADNN <0.0024 (+) <0.0011 (+) <0.0019 (+)

DCNN <0.0028 (+) <0.0015 (+) <0.0020 (+)

DenseNet <0.0010 (+) <0.0012 (+) <0.0012 (+)

MSD-Net <0.0015 (+) <0.0011 (+) <0.0012 (+)

MS-RLM <0.0001 (+) <0.0001 (+) <0.0001 (+)

MM3D-DL <0.0002 (+) <0.0009 (+) <0.0009 (+)

SSA-Net <0.0001 (+) <0.0001 (+) <0.0001 (+)
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performance of SSA-Net against other CNN models on the accuracy, 
F1-score, recall, AUC, and parameter count. The parameter count 
provides the computational complexity of the SSA-Net.

TABLE VIII. Performance of SSA-Net Against Other CNN Models

Model Para (M) Accuracy Precision Recall AUC
MobileNetV2 224M 98.74 99.39 99.37 99.95

DenseNet121 10M 84.39 64.98 53.14 80.83

AlexNet 60M 83.75 62.94 60.01 77.64

InceptionV2 154M 94.39 94.49 94.49 99.49

ResNet50 25M 84.88 77.84 70.74 80.64

SSA-Net 25.5M 99.72 99.70 99.75 99.98

V.	 Conclusion

This study introduces a self-supervised attentive feature learning 
network (SSA-Net) for classifying Alzheimer’s disease. The method 
enhances model accuracy and reliability by combining self-supervised 
learning and attention mechanisms. The backbone ResNet-50 model 
with attentive activation in the encoder is used instead of ReLU, 
improving focus on relevant features. SimCLR, a self-supervised 
learning framework, is employed to learn high-quality visual 
representations in brain MRI scans without labels. On the Kaggle 
Alzheimer’s classification dataset (KACD) for training and testing, the 
proposed SSA-Net achieved 99.7% classification accuracy, surpassing 
the accuracy (98.1%) of ResNet-50. The experiments are conducted to 
examine the proposed SSA-Net using Accuracy, Precision, F1-score, 
Recall, Error rate, and False-Positive Rate (FPR) across non-demented 
(ND), very mild demented (VMD), mild demented (MD), and moderate 
demented (MOD) categories. The results conclude highly accurate 
Alzheimer’s Disease detection and classification across all classes: 
mild demented (99.84%accuracy), moderate demented (100% accuracy), 
non-demented (99.77% accuracy), and very mild demented (99.77% 
accuracy). They also demonstrate minimal error rates (ranging from 
0% to 0.23%) and low false positive rates (ranging from 0% to 0.31%), 
underscoring the model’s robustness in accurately distinguishing 
between different dementia stages. These findings emphasize the 
importance of early detection and effective procedures, supporting 
the potential of deep learning models in improving the detection of 
AD. The results concluded that with ReLU activation, the model’s 
performance declined across all metrics and classes, except for the 
moderate dementia class. The accuracies of SSA-Net increased by 
1.26% (non-demented), 1.54% (very mild demented), and 0.39% (mild 
demented) over ResNet+ReLU. The confusion matrices and ROC curves 
further confirm the excellent performance of SSA-Net. On 5-fold cross-
validation on the KACD dataset, SSA-Net achieved a mean precision 
score of 99.72%, a mean recall rate of 99.75%, and a mean F1-score of 
99.72%. Overall, SSA-Net shows better performance, emphasizing the 
potential of deep learning models in enhancing the accuracy of AD 
detection and classification, supporting their application in clinical 
settings for early detection and effective treatment.

In future studies, the investigation can combine SSA-Net with 
clinical data, such as demographics of patients, genetic information, 
and cognitive tests to improve the prediction of the model. Additionally, 
we can validate the performance of SSA-Net on additional diverse 
datasets to ensure its generalization and robustness across different 
imaging conditions.
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