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is the potential global spread of the monkeypox virus. While monkeypox may not pose the same level of
lethality or contagion as COVID-19, its significant spread across countries is cause for concern. Already,
outbreaks have been reported in 75 nations worldwide. Despite sharing clinical characteristics with smallpox,
including lesions and rashes, monkeypox symptoms are frequently mistaken for those of other poxviruses such
as chickenpox and cowpox. Consequently, accurate early diagnosis of monkeypox by healthcare professionals
remains challenging. Automated monkeypox identification using Deep Learning (DL) techniques presents a
promising avenue for addressing this challenge. In this study, a modified deep convolutional neural network
(DCNN) model named MpoxNet is proposed for the identification of monkeypox disease. The performance of
MpoxNet is evaluated against established DCNN models, including ResNet50, VGG16, VGG19, DenseNet121,
DenseNet169, Xception, InceptionResNetV2, and MobileNetV2. This study addresses the pressing challenge of
monkeypox identification by proposing MpoxNet. With the aim of enhancing early detection and containment
efforts, MpoxNet's performance is evaluated against established DCNN models across two distinct datasets:
MSLD and MSID Dataset. Results reveal MpoxNet's superior test accuracy of 94.82% on the MSLD Dataset,
surpassing other models. However, evaluation on the MSID Dataset highlights variations in performance,
emphasizing the influence of dataset characteristics. Additionally, the introduction of the Swin Transformer
model demonstrates exceptional performance on the MSLD and the MSID Dataset and, achieving an accuracy
of 98%. These findings underscore the importance of considering diverse datasets and leveraging advanced
techniques for robust monkeypox detection systems. Integration of MpoxNet with a mobile application offers

a promising solution for rapid and precise monkeypox disease detection, providing valuable insights for future

) X DOI: 10.9781/ijimai.2024.11.001
research and real-world deployment strategies to effectively combat the global spread of monkeypox.

I. INTRODUCTION

RECENTLY, the global monkeypox epidemic has been threatening
umankind as the world begins to recover from the COVID-19
pandemic. In 2022, many countries stated that they had experienced
an outbreak of monkeypox, illustrating yet another global concern
following the effects of COVID-19 in 2020. A report from the World
Health Organization (WHO) highlights that the epidemic affects

global public health seriously but has refrained from classifying it as
a public health emergency currently [1],[2]. Monkeypox is a disease
that can spread from animals to humans. It comes from the genus
Orthopoxvirus. In terms of its clinical manifestations, it is clinically
quite like chickenpox, measles, and smallpox [3]. However, human-to-
human transmission is also a prevalent transmission mode [4]. In 1958,
in a laboratory in Copenhagen, Denmark, the virus was discovered
for the very first time in the body of a monkey [5]. In 1970, during an
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enhanced campaign to eradicate smallpox, the Democratic Republic of
the Congo recorded the first case of monkeypox, which was identified
in humans and occurred throughout the campaign [6]. Many people
who live close to tropical rainforests are susceptible to contracting
monkeypox, which is often spread throughout the central and western
regions of Africa. The virus spreads through close communication with
an infected person, animal, or object. This disease is spread via bodily
contact, animal bites, respiratory droplets, and mucous membranes
of the eyes, nose, and mouth [7]. Fever, bodily aches, and exhaustion
are some of the early-stage symptoms that people who have been
infected with monkeypox may experience. The long-term impact of
monkeypox is a red bump on the skin [8]. As a result of its rarity
and the similarity of its rash to other diseases, early identification of
monkeypox has proven to be extremely difficult for medical specialists.
On the other hand, the confirmatory PCR test is not used very often
either. Even though 3-6% of people who got monkeypox died in the
recent outbreak [2], it is crucial to find the virus early, find out who
has been in contact with it, and keep that person from spreading
it to other people. Although the mortality rate from monkeypox
infection is modest ranging between 1% to 10% [7], early diagnosis
of monkeypox will help in patient quarantine and origin tracing for
efficient limitation of monkeypox within the neighborhood. In the
past decade, various artificial intelligence (Al) tools, particularly deep
learning approaches, have seen widespread use in various medical
image analyses [9]. Recently, Al techniques significantly contributed
to diagnosing COVID-19 and ranked the severity from multimodal
medical images such as computed tomography (CT), chest X-ray,
and chest ultrasound [10]-[14]. This accomplishment encourages
researchers to try artificial intelligence methods for diagnosing
monkeypox from digitized skin images. This research work presents a
modified MobileNetV2 called MpoxNet and Swin transformer model
to discover monkeypox disease. Furthermore, this research analyzes
the presented model's effectiveness by benchmarking it with various
DCNN models such as ResNet50, VGG16, DenseNet121, DenseNet169,
Xception, VGG19, InceptionResNetV2, and MobileNetV2. The main
focus of this paper is as follows:

« Alightweight DCNN model named MpoxNet and Swin transformer
is developed to detect monkeypox disease using image data.

« The MpoxNet and Swin transformer model performance are
evaluated with different transfer learning CNN models, including
ResNet50, VGG16, DenseNet121, DenseNet169, Xception, VGG19,
InceptionResNetV2, and MobileNetV2.

+ A comprehensive evaluation is conducted on the models
considering the performance metrics such as accuracy, precision,
recall, and F1-score.

+ A mobile application is developed integrating the Swin transformer
model specifically for rapid assessment of monkeypox disease.

The following sections of this paper illustrate the following:
Section II discusses the related work carried out in skin lesion disease
identification. Section III presents the materials and proposed method
for accomplishing the task. It also illustrates some of the existing
DCNN models in this section. Section IV presents the findings and
analysis, while Section V concludes the work.

II. RELATED WORKS

The optimal solutions have yet to be fully realized for the limited
challenge of monkeypox detection utilizing skin lesion images. The
difficulty of locating image datasets to conduct research in this
specialized sector has substantially decreased due to the publication
of a few research articles on the detection and classification of
monkeypox. Another area for improvement is the shortage of

exhaustively annotated datasets with specific features for novel and
distinct object categories. Gessert et al. [15] developed a patch-based
attention method for classifying skin lesions from high-resolution
images using three networks that had already been trained. To
address the problem of asymmetrical class distributions, they utilized
techniques such as class-specific loss weighting, oversampling, and
balanced batch sampling. Additionally, they suggested adopting a
diagnosis-guided loss technique, which considers the algorithm used
for ground-truth annotation.

Similarly, Kawahara et al. [16] used the DERMOFIT dataset to
construct a skin lesion identification system based on AlexNet transfer
learning. Convolutional layers have been added on top of the fully
connected layers present in the model before it was pre-trained. This
was done so that the trained weights of the fully connected layers
could be used as filters. Its 81.8% accuracy rate was higher than other
competing algorithms using the same dataset.

Mohamed et al. [17] provided a strategy for the categorization of
skin lesions, utilizing a transfer learning technique by training all the
layers of the MobileNet and DenseNet models. The imbalanced dataset
was addressed using data augmentation and down-sampling, resulting
in increased performance and ultimately achieving 92.7% accuracy in
MobileNet. While the study demonstrates improved accuracy on the
specific dataset used (HAM10000), it’s unclear how well these models
generalize to unseen data from different sources or populations.
Without external validation on diverse datasets, it’s challenging to
ascertain the robustness of these models. In [18], a Full Resolution
Convolutional Network (FRCN) carries out image segmentation, and
DL models such as Inception-ResNet-V2, ResNet-50, InceptionV3,
and DenseNet-201 perform skin lesion classification. To address
the imbalance issue, the framework carried out a stratified five-fold
cross-validation and employed a weighted class technique. The size
of the dataset was increased by inverting and rotating the data. When
compared to all other models on the ISIC 2018 dataset, ResNet’s
diagnostic accuracy was the highest at 89.28 %. The evaluation
primarily focuses on datasets from the International Skin Imaging
Collaboration (ISIC), which do not fully represent the diversity of skin
lesions encountered in clinical practice globally. Also, dermoscopy
images can vary significantly in quality, lighting conditions, and
presence of artifacts. Assessing the model’s performance on images
with varying quality and artifacts would provide insights into its
robustness and potential limitations in real-world scenarios. To
recognize six distinct types of skin lesions, Jinnai et al. [19] proposed
a faster region-based CNN (FRCNN) model built on top of VGG-16.
The use of digital cameras resulted in the collection of 5846 photos
from 3551 patients. After that, annotations and enhancements were
added to the photographs. A total of 20 dermatologists’ predictions
were compared to the study’s findings. The FRCNN achieved a higher
accuracy rate of 86.2 % than the dermatologists. The study mentions
that the neural network was trained using clinical images from only
one institution, which introduce biases.

The MobileNet architecture is altered to facilitate the development of
Sae-Lim et al. [20] models for identifying skin lesions. The MobileNet’s
layers from the fifth to the tenth were dropped and balanced with a fully
connected dropout layer that includes the Softmax activation function.
This both decreases the total number of factors and accelerates the
process. The authors researched to determine the effectiveness of data
augmentation and upsampling, and concluded that both techniques
were beneficial. The evaluation of the proposed model is solely based
on the HAM10000 dataset. External validation on different datasets
would provide more robustness to the findings and demonstrate the
generalizability of the model. The comparison is primarily between
the proposed modified MobileNet and the traditional MobileNet. It
would be valuable to compare the proposed model with other state-
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of-the-art architectures for skin lesion classification to assess its
competitiveness. Transfer learning from the MobileNet model was
used in [21] to categorize seven different skin lesions taken from
the HAM10000 dataset. Several distinct data augmentation methods
were utilized, and the result was a classification accuracy of 83.1 %.
Harangi et al. in [22] reported a weighted ensemble-based network
which achieves 83.8 % accuracy on the ISBI 2017 dataset and the base
models for this network are AlexNet, VGG, and Inception. The base
CNNs’ final fully connected and classification layers were removed
and replaced with a joint fully connected layer with softmax activation
to increase the prediction accuracy. The dataset mentioned consists of
2,000 training images, with a significant class imbalance (e.g., 1,372
nevus, 374 melanoma, 254 seborrheic keratosis). Class imbalance can
significantly affect the performance of machine learning models. Also,
it doesn’t delve into the generalization capability of the proposed
model. Steppan et al. [23] created a transfer-learning-based ensemble
model for categorizing nine types of skin lesions. Six different
datasets were employed, and data augmentation methods is used to
enhance the dataset size. The images are pre-processed to remove any
unwanted dark regions. Additionally, three techniques were employed
to equalize the classes. EfficientNet outperformed other base models,
with an accuracy of 63.4% reported. A technique is proposed for
classifying seven distinct types of skin lesions employing deep
neural networks. This method employs five state-of-the-art models
including ResNet, DenseNet, Xception, ResNeXt, and SeResNeXt. The
classification is carried out using the HAM10000 [22] and ISIC datasets
[24]-[26]. Data augmentation methods were used to address the issue
of large discrepancies in the collected data.

In Hu et al. [27], the authors design a DCNN architecture in
which LeNet-5 is used as the backbone for learning the X-ray image
features. This architecture includes a powerful single-layer learning
machine that acts as the classifier to distinguish standard cases, viral
pneumonia, and COVID-19. Similarly, by employing different DL
models, Sharma et al. [28] extract features of X-ray images from the
pneumonia dataset. Besides, it illustrated that data augmentation
enhances the model’s accuracy. In addition, they investigated the
influence of dropouts in the model. The result confirms that the model
with augmentation and dropout achieves an accuracy of 90.68%,
whereas the model without augmentation and dropout achieves an
accuracy of 74.98%. Heidari et al. [29] detected pneumonia caused by
COVID-19 by devising a convolutional neural network-based model
which leverages X-ray images and achieves an accuracy of 98.80% and
overall accuracy achieved by the model of 94%. Madhavan et al. [30]
implemented Res-COvNet to detect the COVID-19 virus. The transfer
learning approach is the cornerstone of this DL model, which includes
ResNet-50. The ResNet-50 extracts significant X-ray image features
and expands the architecture with a classification layer. The proposed
model achieves 96.20% accuracy for determining typical COVID-19,
bacterial pneumonia, and viral pneumonia diseases.

In addition to the COVID-19 virus detection, periodic investigations
employed the DL model for different disease detection like herpes,
chicken pox, etc., For instance, Sandeep et al. [31] analyzed various
skin infection detection models like Psoriasis, Melanoma, Chicken Pox,
Vitiligo, Acne, Ringworm, Herpes, and Lupus employing DL models.
Furthermore, they classified eight different skin lesion disease classes
through a CNN model and analyzed the results with the support of
the pre-trained VGG-16 model. Similarly, Glock et al. [32] use the
transfer learning method to detect measles disease. They harnessed the
ResNet-50 model which had the input of a diverse rash image dataset,
and accomplished the results of sensitivity, specificity, and accuracy at
81.7%,97.1%, and 95.2%, respectively. Ahsan et al. [33] gathered images of
Measles, Chickenpox, Monkeypox, and normal by employing web data
mining approaches, and the specialists demonstrated its performance.

Subsequently, the authors assessed a transfer learning technique using
the VGG-16 model, considering two approaches. The first approach
evaluated the identification of images into different disease classes,
such as chickenpox and monkeypox. Whereas the second approach
employs different data augmentation methods to enhance the dataset
size. The model obtained an accuracy of 97% with data augmentation
in identifying the monkeypox. In contrast, without applying data
augmentation the accuracy of the model dropped to 78%. Moreover,
Chiranjibi Sitaula and Tej Bahadur Shahi [34] investigated 13 distinct
pre-trained DL models to detect monkeypox disease via images. The
authors analyzed the comparison results and devised an ensemble
method that hybrids Xception and DenseNet169.This hybrid method
produces an accuracy of 87.13%. The author employed 13 pretrained
models and enhanced their performance by incorporating custom
layers, resulting in an average accuracy rate of 85.44%. However, they
acknowledged that the relatively low accuracy could be attributed
to the absence of a validation step, which is crucial for mitigating
overfitting and ensuring the attainment of satisfactory outcomes.

The author utilized a combination of CNN models and machine
learning algorithms for diagnosing Monkeypox disease based on
skin images. Three CNN models, namely VGG16Net, GoogleNet,
and AlexNet, were employed to extract features from the images.
Classification algorithms including Naive Bayes (NB), Decision Tree
(DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and
Random Forest were then utilized as classifiers. The findings revealed
that when combined with the VGG16Net CNN model, the naive Bayes
algorithm outperforms with the highest accuracy level of 91.11% [35].

S. Magsood and R. Damasevicius propose a deep learning-based
approach for monkeypox detection, achieving high accuracy and
performance. However, it relies solely on public datasets for evaluation,
potentially limiting its generalizability to real-world scenarios with
diverse populations and contexts [36]. The proposed framework
for multiclass skin lesion classification combines deep learning and
optimization techniques to achieve high accuracy by Hussain et al. [37].
While augmentation improves accuracy, it also leads to a significant
increase in redundant features, impacting efficiency. The use of KNN
classifiers results in a drop in classification accuracy, requiring further
analysis and optimization. The fusion process enhances accuracy but
at the cost of increased computational time due to the larger number
of predictors.

The above discussion indicates that there is limited research in the
field of Monkeypox disease diagnosis, particularly in the development
of a refined transfer learning (TL) based diagnostic model. There
are notable gaps identified in the existing research that should be
addressed. One significant limitation is the lack of large datasets
and memory constraints. Previous studies have often relied on small
and constrained datasets that may not encompass the full range
of variations observed in monkeypox cases. This insufficiency in
dataset diversity can lead to overfitting issues and ultimately reduce
the overall accuracy of the models. Moreover, a significant aspect
that is lacking in most prior studies is the absence of a validation
set. The failure to include a validation set prevents the assessment
of whether the models are excessively fitted to the training data,
potentially leading to reduced accuracy when applied to new and
unseen data. Therefore, it is crucial to address this gap by creating
a model that is computationally efficient, provides comprehensive
model interpretation, incorporates techniques for generalization
and regularization to mitigate overfitting. Our proposed model is
the modified version of DCNN (MpoxNet) and Swin transformer,
which provides better accuracy compared to the other models used
in disease detection, and it is a lightweight model which can be easily
deployed. The proposed work seeks to contribute to the field by
providing a novel and efficient approach to accurately identify and
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Fig. 1. (a). Sample Images of the MSLD dataset.

classify monkeypox based on image data, potentially improving the
diagnosis and treatment. Our research leverages the capabilities of
modern smartphones and their cameras to design a self-contained
diagnostic solution. Emphasizing efficiency, the selected model is
custom-designed to ensure both reliable and optimal performance on
low-performance devices, such as smartphones.

III. MATERIALS AND METHODOLOGY

A. Dataset

Monkeypox Skin Lesion Dataset (MSLD) [38], a freely available
dataset, is used in this research. The dataset contains images of patients
with monkeypox and non-monkeypox conditions (measles, chickenpox)
focusing on various body parts. The dataset consists of 228 images,
among which 102 belong to the ‘Monkeypox’ class, and the remaining
126 represent the ‘Others’ class (i.e., chickenpox and measles). Since
the dataset has a limited number of images, it is inadequate for the
classification task. Therefore, several data augmentation methods
have been applied to increase the dataset size, and augmented images
are provided in a separate folder in the same dataset. For the class
of Monkeypox, there are 102 original images and 1428 augmented
images. For other diseases such as Chickenpox and measles, there
are 126 original images and 1764 augmented images. Introducing the
Monkeypox Skin Images Dataset (MSID), a valuable resource in the
battle against the latest monkeypox outbreak. This dataset, meticulously
compiled by Diponkor Bala and Md. Shamim Hossain, offers a crucial
tool for healthcare professionals worldwide. With early diagnosis
being paramount in mitigating the rapid spread of monkeypox, MSID
[38] provides a diverse collection of skin images aimed at aiding in
the disease’s detection. Comprising four distinct classes - Monkeypox,
Chickenpox, Measles, and Normal - this dataset offers a comprehensive
array of visual data sourced from reputable internet-based health
websites. Diponkor Bala and Md. Shamim Hossain, have meticulously
curated this dataset to facilitate research and development in the field
of disease detection and diagnosis. A few representative samples of the
two datasets are shown in Fig. 1.a. and Fig. 1.b.

B. Training and Testing Dataset

In this study, the entire image dataset is split into an 80:20 ratio,
with 80% of the data used for training and 20% for testing. Additionally,
the training dataset is further divided into two categories: 80% of the
images are exclusively used for training purposes, while the remaining
20% are allocated for validation to assess model overfitting. During
the training process, each image is resized to meet the dimensional
requirements of the model, with the images resized to 224 x 224 for
models such as ResNet50, VGG16, VGG19, MobileNetV2, MpoxNet,
and Swin Transformer. Furthermore, hyperparameters such as a
learning rate of 0.001, a batch size of 32, 25 epochs, and the Adam
optimizer are used for model training.

Fig. 1. (b). Sample Images of the MSID dataset.

C. Transfer Learning

Transfer learning is an approach that enables us to leverage the
knowledge gained when solving certain problems and apply it to
other related but different problems. Medical image categorization for
rare or emergent disorders is a prime example of a problem where
there is insufficient training data to train a model from scratch; hence,
transfer learning is highly effective in such cases. There are primarily
two methods by which a pre-trained model can be utilized for a
specific task. The first method involves treating the previously-trained
model as a feature extractor, without adjusting its internal weights,
and then training a classifier on top of it. In the second method, the
entire network or a portion of it is fine-tuned to perform optimally
on the newly assigned task. Consequently, the model’s weights are
adjusted during training, with the pre-trained values serving as initial
values for the current task. In this instance, fine-tuning the final layer
of the CNN and using the pre-trained models as feature extractors
is preferred due to the limited number of images in the monkeypox
category.

D. MpoxNet

A Depthwise Separable Convolution (DSC) network serves as the
foundation of the proposed work, integrated into MobileNet [39]. DSCs
are factorized convolutions that combine point-wise and depthwise
convolutions to generate output channels. Point-wise convolution
convolves the kernels of each filter with each input channel. This
research employs depthwise separable convolution layers to develop
a modified MobileNetV2 (MpoxNet) model from scratch. The building
block of the MobileNetV2 model is presented in Fig. 2(a), while the
modified MobileNetV2 (MpoxNet) model’s building block is depicted
in Fig. 2(b). The modified MobileNetV2 model incorporates Global
Average Pooling (GAP) layers, batch normalization (BN), and the ReLU
activation function. Node dropout is achieved using the dropout layer.
Finally, a new dense layer is added for disease classification. During
training, the weights of the newly added layer are updated using the
monkeypox dataset, and in the fine-tuning stage, the proposed model
utilizes pre-trained weights from the ImageNet dataset. The new
dense layer classifies monkeypox disease using the sigmoid activation

algorithm.

In the MobileNet model, convolutions factorize a conventional
convolution into a depthwise convolution and a 1x1 pointwise
convolution. DSCs are a form of factorized convolutions that form
the foundation of this model. Each input channel in a MobileNet is
subjected to a singular filter in the context of depthwise convolution.
To merge the results of the depthwise convolution with the pointwise
convolution, a 1x1 convolution is performed on each set of results.
A typical convolution takes the inputs in a single step, filters them,
and combines them into a new set of outputs. This is separated into
two layers using depth-separable convolution where the first layer is
responsible for filtering, and the second layer is involved in combining
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Fig. 2. (a) Core layers of MobileNetV2 (b) Core layers of Modified MobileNetV2
(MpoxNet).

the results. This factorization can considerably decrease the size of the
calculation and the model. Fig.3 illustrates how a standard convolution
(Fig.3 (a)) can be broken down into a depthwise convolution (Fig.3 (b))
and a pointwise convolution (Fig.3(c)) using factorization.

D, cer
Dy < M »
(a)
M
DK
D, N >
(b)
M
1
1 «—— N —»

(©

Fig. 3. (a) Standard Convolution Filters, (b) Depthwise Convolutional Filters,
(c) Pointwise Convolution filters.

A typical convolutional layer receives as input a square feature
map with dimensions (D,, D,, M) and outputs a square feature map

with dimensions (D, D, N), where D, denotes the spatial width and
height of the input feature map, the number of input channels is
represented by M. Whereas the output feature map’s spatial width
and height is denoted by DG and N is the number of output channels.
Parameterizing the typical convolutional layer is a convolution kernel
K with dimensions D, X D, X M x N, where D, is the presumed square
spatial dimension of the kernel.

Eq. (1) represents the output feature map for standard convolution
produced when stride one and padding are considered:

Ggin = Z Kijmmn * Frvi-1i4j-1,m
izm (1)

The computing cost of conventional convolutions is given in Eq. (2).

Dx-Dg-M-N-Dp-Dp @)

The computational cost multiplies input channels M, output
channels N, kernel size D, x D,, and feature map size D, x D,. All these
concepts and their interplay are considered by MobileNet models.
First, it employs DSCs which separate the number of output channels
from the size of the kernel. The typical convolution process filters the
feature using convolutional kernels and combines features to generate
a new representation. By using factorized convolutions called DSCs,
the filtering and combining steps can be split into two steps. This
reduces the amount of work that needs to be done on the computer
by a large amount.

Convolutions performed depthwise and pointwise are the building
blocks of depthwise separable convolution, which consists of two
layers. The depth of the convolutional filter determines how much
weight is given to each input channel (input depth). After that, a
pointwise convolution, which is a straightforward 1 x 1 convolution,
is applied to the output of the depthwise layer to produce a linear
combination. For both layers, MobileNet employs nonlinearities
known as batchnorm and ReLU. Convolution in the depthwise
direction using one filter for each channel of the input (the depth) can
be represented by Eq. (3):

GAK,I,,n = Z I?i,j,m,n : Fk+i—1,l+j—1,m
izm (©)

where K is the depthwise convolutional kernel with the dimensions
D, x D, X M, and the m™ filter in K is applied to the m* channel in F
to form the m™ channel of the filtered output feature map G. where
G is the filtered output feature map. Eq. (4) is the computing costs
associated with depthwise convolution:

Dy - Dy - M..Dy - Dy (4)

In comparison to ordinary convolution, depthwise convolution is
incredibly efficient. On the other hand, it does not integrate the input
channels to generate new features; instead, it filters them. DSCs are
expensive and are represented by Eq. (5), equivalent to adding together
the convolutions performed in depth and one dimension.

Dg Dy -M..Dp-Dp +M-N-Dg-Dp )

By recasting convolution as a two-stage process consisting of
filtering and combining, it can reduce the amount of computing
required, as given in Eq. (6):

Dy Dy M.:Dg-Dp+M-N-Dy-Dp 1

1
Dy -Dg-M-N-Ds-Dy =nt

D

(6)

MobileNet uses 3x3 depthwise separable convolutions, which
require 8 to 9 times less processing than normal convolutions. Due
to the low computational cost of depthwise convolutions, additional
factorization in spatial dimensions discussed in [37], [38], does not
yield significant computational savings.
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Fig. 4. Proposed Architecture of Swin Transformer.

E. Swin Transformer

For image classification using the Swin Transformer architecture
(Fig. 4), the encoding and decoding process is summarized as follows:

1. Encoding Process:

i. Take an input image of size (H X W X (), where H is the height, W
is the width, and C is the number of channels (e.g., RGB channels).

=

ii. Divide the input image into non-overlapping patches of fixed

size. Each patch is treated as a token.

=

iii. Each patch is linearly embedded into a lower-dimensional space
using a learnable linear projection. This step converts the pixel

values of each patch into a high-level feature representation.

iv. Augment the patch embeddings with positional embeddings to
provide spatial information to the model. Positional embeddings
encode the spatial relationships between patches in the image.

v. Process the patch embeddings in a hierarchical manner
through multiple stages, with each stage consisting of several
transformer blocks.

.

vi. Within each stage, apply multiple transformer blocks to process
the patch embeddings. Each transformer block consists of self-
attention layers followed by feedforward layers. Self-attention

helps capture global dependencies within the patches.

=

vii. After processing within each transformer block, merge the patch
embeddings to form larger patches. This step allows the model to

capture both local and global information effectively.

viii. Before passing the merged patches to the next stage, apply
down sampling operations to reduce spatial resolution. Down
sampling helps increase the receptive field while managing
computational complexity.

2. Decoding Process:

i. Perform global average pooling over the output of the final
stage. This aggregates information from all patches into a single
feature vector.

=

ii. Pass the aggregated feature vector through a classification head,
which typically consists of one fully connected layer followed by
a sigmoid activation function for MSLD dataset. For the MSID
dataset, two fully connected layers are followed by a softmax

activation function.

=1

iii. The output of the softmax layer represents the predicted
probabilities of the input image belonging to each class in the

classification task.

The Swin Transformer primarily focuses on encoding the input
image into a compact representation and then uses this representation
to make predictions about the image’s class. The decoding process is
relatively straightforward, as it involves only global pooling and a
classification head.

F. Pre-Trained Deep Learning Models

The effectiveness of the proposed model in identifying monkeypox
disease is evaluated by comparing its results with the well-known
deep learning models, including ResNet50, VGG16, DenseNet121,
DenseNet169, Xception, VGG19, InceptionResNetV2 and MobileNetV2.

1. ResNet

He et al. [40] proposed the ResNet network which served as the
foundation for the ILSVRC 2015 and COCO 2015 classification
challenges. They achieved a classification error rate of 3.57% on
ImageNet, making the model the most accurate of all competitors.
Deep residual learning was inspired by the failure of several nonlinear
layers to learn identity mappings and degradation problems (ResNet).
The design of ResNet is known as a network-in-network (NIN), and it
is based on many stacked residual units. The network is made up of
these residual units, which are like a set of building blocks. The ResNet
architecture is constructed out of various building blocks formed by
a collection of residual units. Convolutional and pooling layers make
up the residual units. ResNet’s architecture is comparable to that of
the VGG network consisting of 33 filters, although it is approximately
eight times deeper than the VGG network. This is because global
average pooling is used instead of fully connected layers. The residual
module of ResNet is updated to get better precision, which was
accomplished by modifying it to make use of identity mappings. In
this work, the ResNet model is created with 50 layers, and pre-trained
weights from ImageNet are loaded into it. Finally, the existing fully
connected layer is replaced with the new dense layer with a sigmoid
activation function, and it is trained using the monkeypox dataset. In
our work, sigmoid activation function is used to classify whether the
disease is monkeypox or others (chickenpox, measles).

2. VGG Network

The CNN model, the VGGNet was developed in [41] specifically
for the ILSVRC-2014 competition. The model achieved a top-5 error
rate of 7.5% on the validation set, securing the second position in the
competition. In VGGNet, the depth of the architecture is increased to
16 and 19 layers by employing tiny 3x3 convolution filters. Despite
the increased depth, the number of parameters is reduced, resulting
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in a more efficient network. These two new architectures are named
VGG-16 and VGG-19. The VGG model is made up of convolution layers
that have multiple consecutive 3x3 convolutions. After that comes a
2x2 max pooling layer, followed by two fully connected layers, with
the final layer functioning as the softmax output. In most cases, the
model is constructed with only three convolutional layers of size three
stacked one on top of the other in increasing depth. The max pooling
method shrinks the volume size (down sampling). To accomplish the
fine-tuning of the VGG-16 and VGG-19, the original fully connected
layer is truncated and a new dense layer is added. Furthermore, both
the models utilize the ImageNet weights and a new dense layer is
retrained with a new target dataset whereas the weight values are also
updated. The sigmoid activation function is applied in the final layer
for binary classification.

3. MobileNetV2

The MobileNetV2 network is constructed using the MobileNetV1
model as a foundation, and nonlinearities in the model’s narrow
layers that contain its constituent parts were addressed in this model
[42]. Two new features have been added to the MobileNetV2 over its
predecessor. First, some bottlenecks can form between layers linearly;
second, shortcuts can form between bottlenecks. The architecture of the
MobileNetV2 network includes depth-wise separable filters and their
combination stages. This model uses the 1x1 deep convolution filter
for each layer and inputs are divided into two layers for examination
using depthwise separable convolutional filters. The characteristics
collected by filtering them out are joined in the combination stage
to create a new layer. ReLU and Batchnorm activation functions are
used in the framework of the MobilNetV2 model. MobileNet V2 is
fine-tuned by loading the ImageNet pre-trained weights and including
the customized dense layer to the top layer. The model’s newly added
layer is retrained using the monkeypox dataset, and its weight values
are changed to reflect the new dataset. The target dataset’s classes are
matched to the number of classes in the new layer, and the sigmoid
function is turned on to classify diseases.

4. DenseNet

The DenseNet121 is one of the models from DenseNet family which
contains 121 layers. It is the most popular image classification model.
The models were initially created in the Torch framework, and are
then converted to the Caffe format. The ImageNet database serves as
the pre-training set for all DenseNet models. Like this, the well-known
DenseNet169 architecture is primarily employed for classification
problems. The architecture consists of a transition layer, dense layers,
maxpool layers, and convolutional layers. The architecture includes the
ReLU as an activation function, and softmax as an activation function
at the final layer. The convolutional layer extracts the features from
the image, while the maxpool layer reduces the dimensionality of its
inputs. Subsequently, the flatten layer converts the output into a single
1D array, resembling an artificial neural network input, which is then
processed by the fully connected layer for classification [43].

5. Xception

The Xception [44] model, an extension of the inception network,
employs separable convolution layers in place of traditional
convolution layers. Its 36 convolution layers are utilised to extract the
features from the input. The Xception model incorporates a depth-
wise separable convolutional neural network alongside standard
convolutions. The term “Separable Convolutional” pertains to the
depth-wise separable convolution, which serves as a replacement for
the traditional convolutional layer. Its primary objective is to reduce
computational expenses while performing similar functions as the
conventional convolutional layer. In the initial depth-wise separable
convolutional layer, the point-wise convolution is applied after the

depth-wise convolution. The Xception model utilizes a customized
depth-wise separable convolution layer, where a 1x1 convolution
is performed on each channel before applying the depth-wise
convolution operator.

6. InceptionResNetV2

Relative connections and an enhanced version of the Inception
architecture are combined in the InceptionResNetV2 design, which
has 164 deep residual layers. A series of filters are concatenated to
form each branch (1x1, 3x3, 5x5, etc.). The split-transform-merge
architecture of the inception module is regarded to have good
representational capabilities in its deep layers [45]. The architecture
is constructed by fusing several construction components. origin,
stem, Average Pooling, Dropout, and Softmax blocks, as well as 20 x
Inception-ResNet-B, Reduction-B, 10 x Inception-ResNet-C, and 10 x
Inception-ResNet-A, are among the featured blocks [46]. The output
of each Inception-ResNet block can be scaled in several ranges thanks
to the scale factors employed in the blocks. The network will accept
images up to 299 x 299 x 3 in size.

G. Performance Evaluation

The model’s predictive performance is assessed by utilizing various
metrics, including accuracy, precision, recall, and F1-score. From [47]
the formulae for the performance measures are adopted. Accuracy
measures a method’s ability by comparing accurately predicted cases
to the overall number of cases. The precision refers to the proportion of
accurately anticipated positive cases to the overall number of expected
positive cases. A low percentage of false positives is associated with
high precision. The recall metric measures the proportion of correctly
predicted positive instances, by the total number of observations
belonging to the positive class in the actual dataset. In the event of
an unbalanced class distribution, the F1 Score is calculated. This is
especially important when there are many false negatives in the data.

IV. EXPERIMENTAL RESULTS

In our experiment, the performance of the proposed model is
quantitatively compared to that of various pre-trained DL models
including ResNet50, VGG19, VGG16, and MobileNetV2. Since the
size of the dataset is small the deep learning models with a smaller
number of trainable parameters are selected to investigate the effect
of the sample size used for training. Due to the limited size of the
image collection, the deep models are initialized using the weights
learned from ImageNet and then fine-tuned with data. During
training, different augmented images for each class are employed to
compensate for the class imbalance in the original dataset. Initially,
all the models are trained with 25 epochs. The training and validation
variations obtained by the different models are depicted in Fig. 5. a.
and Fig. 5. b. for MSLD and MSID dataset respectively.

Similarly, the loss values obtained by the different models are
presented in Fig. 6. a. and Fig. 6. b. for MSLD and MSID dataset
respectively. Comparing the performance of the five different models,
modified MobileNet V2 consistently achieves the highest accuracy
with fewer epochs. Consequently, the model contains a lesser number
of parameters compared with the other models. Following the
proposed model MobileNet V2 shows better performance. Moreover,
ResNet 50, and VGG16 achieve satisfactory performance and VGG19
doesn’t perform well with the small dataset. The effectiveness of
the models is evaluated using the classification accuracy, and its
comparison is depicted in Fig. 7. a. and Fig. 7. b. for MSLD and MSID
dataset respectively.
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Fig. 6. (a) Loss variations of various DL models and MpoxNet during training and validation process for MSLD dataset. (b) Loss variations of various DL model
and MpoxNet during training and validation process for MSLD dataset.
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dataset.

Further analysis of the model performance is conducted by

TABLE II. PERFORMANCE METRICS COMPARISON OF THE PROPOSED MODEL

calculating its precision, recall, and F1-score and its comparison is
shown in the Tables I and II

TABLE 1. PERFORMANCE METRICS COMPARISON OF THE PROPOSED MODEL
WiTH OTHER DL MoODELS USING MSLD DATASET

Models M.SI.JD Dataset
Accuracy Precision  Recall F1 score

MobileNetV2 84.44 0.87 0.84 0.84
ResNet 50 82.22 0.84 0.82 0.82
VGG16 73.33 0.76 0.71 0.72
VGG19 68.89 0.68 0.66 0.66
DenseNet 121 77.78 0.78 0.72 0.74
DenseNet 169 88.38 0.89 0.88 0.88
Inception-ResNet V2 86.67 0.88 0.87 0.87
Xception 89.26 0.89 0.87 0.86
MpoxNet 94.82 0.94 0.93 0.93
Swin Transformer 98.08 0.98 0.98 0.98

WitH OTHER DL MODELS USING MSID DATASET

MSID Dataset
Models Accuracy Precision  Recall F1 score
MobileNetV2 80.36 0.78 0.75 0.75
Resnet 50 73.24 0.72 0.73 0.7
VGG16 60.87 0.62 0.64 0.64
VGG19 64.56 0.66 0.67 0.64
DenseNet 121 76.78 0.75 0.77 0.73
DenseNet 169 73.02 0.71 0.73 0.69
Inception-ResNet V2 71.10 0.71 0.62 0.63
Xception 72.49 0.66 0.75 0.66
MpoxNet 73.54 0.75 0.78 0.73
Swin Transformer 98.84 0.97 0.96 0.99

Table I and Table II provide a comprehensive comparison of the
performance metrics of various deep learning (DL) models, including
MobileNetV2, ResNet50, VGG16, VGG19, DenseNet121, DenseNet169,
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Inception-ResNet V2, Xception, MpoxNet, and Swin Transformer,
using two different datasets: MSLD (Table II) and MSID (Table III). The
table II presents accuracy, precision, recall, and F1 score for each DL
model using the MSLD dataset. Swin Transformer exhibits the highest
accuracy (98.08%), followed closely by MpoxNet (94.82%) and Xception
(89.26%). These models outperform others in accurately classifying
monkeypox images. It also achieves the highest precision (0.98),
indicating its ability to minimize false positives. MpoxNet follows
closely with a precision of 0.94. Swin Transformer and DenseNet169
both demonstrate the highest recall (0.98), indicating their ability to
correctly identify true positives. It again achieves the highest F1 score
(0.98), reflecting a balance between precision and recall.

Similarly, table II presents the performance metrics of DL models
using the MSID dataset. Swin Transformer achieves the highest
accuracy (98.84%), indicating its effectiveness in accurately classifying
monkeypox images within the MSID dataset. It also exhibits the
highest precision (0.97), followed by MpoxNet (0.75). Swin Transformer
demonstrates the highest recall (0.96), indicating its ability to correctly
identify true positives. It achieves the highest F1 score (0.99), indicating
a balance between precision and recall, making it the most reliable
model for monkeypox detection in the MSID dataset.

Across both datasets, Swin Transformer consistently outperforms
other DL models in all performance metrics, demonstrating its
robustness and reliability in monkeypox detection. MpoxNet also
performs well, especially in terms of accuracy and precision, making it
a viable alternative to Swin Transformer. The impressive performance
of Swin Transformer suggests its potential for real-world applications
in healthcare, where accurate and efficient disease detection is critical.
While Swin Transformer shows promising results, further research
and validation on larger and more diverse datasets are necessary to
confirm its generalizability and effectiveness in real-world scenarios.

These tables highlight the superiority of Swin Transformer and
MpoxNet in accurately detecting monkeypox disease, showcasing
their potential to revolutionize disease diagnosis in healthcare.

V. MOBILE APPLICATION

Creating a mobile application that integrates deep convolutional
neural networks (CNNs) for diagnosing monkeypox disease has the
potential to bring revolutionary change to the healthcare industry.

This app aims to offer a convenient and precise tool for early detection,
leading to improved medical outcomes. The app is designed with a user-
friendly interface to ensure seamless interaction with various features
and functionalities. Users can easily capture or upload images for
analysis, enhancing the convenience and accessibility of the diagnosis
process. The proposed modified MobileNetV2 model is integrated with
the mobile application due to its memory efficiency compared to other
deep learning models during deployment. Users can capture or upload
images of skin lesions or rashes related to monkeypox within the
mobile application. These images are then analyzed using the modified
MobileNetV2 model to identify patterns and indicators of monkeypox
disease. Overall, the deep learning-based mobile application for
monkeypox detection has the capability to assist in early identification,
prompt treatment, and efficient disease management, thereby making
a valuable contribution to public health initiatives. The mobile
application is built using the React Native framework, enabling cross-
platform compatibility for both iOS and Android. This approach saves
development time and resources since separate codebases for each
platform are not required. Fig. 8 displays screenshots of the mobile
application developed for monkeypox disease detection.

VI. DiscussioN

The proposed model outperformed previous studies in terms of
performance metrics. The experiments conducted confirmed that the
trained model achieves successful detection of a Monkeypox image
within an impressive 44-second and 31-second timeframe for MSLD
and MSID datasets, respectively. This remarkable result indicates
that the system could be utilized as a real-time application, enabling
timely and efficient detection of Monkeypox cases. The outstanding
performance and real-time capabilities of our proposed system have
promising implications, offering significant advancements in the field
of Monkeypox detection. Furthermore, its success contributes to the
overall progress and development of Al-based diagnostic tools in
the healthcare sector. Despite achieving promising results, our work
has certain limitations that should be acknowledged. The primary
constraint of this research is associated with the dataset used. The
current dataset lacks clinical approval and solely comprises skin images.
To develop more robust models suitable for real-world applications, it
is crucial to collect additional features, such as laboratory test data, to
enhance the model’s reliability and practicality.
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VII. CONCLUSION

This study’s findings hold both theoretical and practical implications
for the field of disease identification, particularly in the context of
emerging infectious diseases like monkeypox. The development
and evaluation of MpoxNet, alongside the introduction of the Swin
Transformer model, contribute significantly to the advancement of
automated monkeypox detection systems. The theoretical contribution
lies in the exploration of deep learning techniques for improving the
accuracy and efficiency of disease identification, thereby enhancing
early detection capabilities and potentially curbing the spread of
infectious diseases.

From a practical standpoint, the integration of MpoxNet with
a mobile application offers several advantages for real-world
implementation. The rapid and precise detection capabilities of
MpoxNet empower healthcare professionals to swiftly diagnose
monkeypox, enabling timely intervention and containment measures.
Moreover, the accessibility of the mobile application facilitates
broader deployment in regions with limited healthcare infrastructure,
ultimately aiding in the global fight against the spread of monkeypox.

Despite the promising findings, this study is not without limitations.
Firstly, the evaluation is limited to two specific datasets, potentially
constraining the generalizability of the findings to broader population
samples or different geographic regions. Additionally, the reliance
on deep learning models may pose challenges related to model
interpretability and transparency, which are crucial for gaining trust
and acceptance among healthcare practitioners and policymakers.

For future research, it is imperative to expand the evaluation of
MpoxNet and the Swin Transformer model on more diverse datasets
representing a broader range of demographic and geographic
characteristics. Additionally, exploring methods to enhance the
interpretability of deep learning models for disease identification
could improve trust and adoption in clinical settings. Furthermore,
investigating the integration of real-time data streams and advanced
analytics techniques could enhance the predictive capabilities of
automated disease detection systems, paving the way for proactive
and preventive healthcare interventions.

APPENDIX

A. Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

B. Data Availability

The data will be made available on request.

C. Funding

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

ACKNOWLEDGMENT

The authors have no information to acknowledge.

REFERENCES

[1] The World Health Network Declares Monkeypox a Pandemic -
Press —June 22, 2022. Accessed: [Online]. Available: https://www.
worldhealthnetwork.global/monkeypoxpressrelease.

[2] WHO, “Monkeypox Fact Sheet 2024. Accessed: [Online]. Available:
https://www.who.int/news-room/fact-sheets/detail/monkeypox.

(3]

(4]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[20]

[21]

[22]

-139 -

S. N. Ali et al., “Monkeypox skin lesion detection using deep learning
models: A preliminary feasibility study;” arXiv preprint arXiv:2207.03342,
2022.

E. Alakunle, U. Moens, G. Nchinda, and M. I. Okeke, “Monkeypox virus
in Nigeria: infection biology, epidemiology, and evolution,” Viruses, vol.
12, no. 11, p. 1257, 2020.

M. Moore and F. Zahra, “Monkeypox,” in StatPearls [Internet], StatPearls
Publishing, 2021.

L. D. Nolen, L. Osadebe, J. Katomba, J. Likofata, D. Mukadi, B. Monroe,
and M. G. Reynolds, “Extended human-to-human transmission during
a monkeypox outbreak in the Democratic Republic of the Congo,
Emerging Infectious Diseases, vol. 22, no. 6, pp. 1014, 2016.

P. Y. Nguyen, W. S. Ajisegiri, V. Costantino, A. A. Chughtai, and C.
R. Maclntyre, “Reemergence of human monkeypox and declining
population immunity in the context of urbanization, Nigeria, 2017-2020,”
Emerging Infectious Diseases, vol. 27, no. 4, pp. 1007, 2021.

Q. Gong, C. Wang, X. Chuai, and S. Chiu, “Monkeypox virus: a re-
emergent threat to humans,” Virologica Sinica, 2022.

T. Islam, M. A. Hussain, F. U. H. Chowdhury, and B. R. Islam, “Can
artificial intelligence detect monkeypox from digital skin images?”
bioRxiv, 2022.

J. Sun, L. Peng, T. Li, D. Adila, Z. Zaiman, G. B. Melton-Meaux, and C.
J. Tignanelli, “Performance of a chest radiograph Al diagnostic tool for
COVID-19: A prospective observational study,” Radiology: Artificial
Intelligence, vol. 4, no. 4, pp. €210217, 2022.

A. Akbarimajd, N. Hoertel, M. A. Hussain, A. A. Neshat, M. Marhamati,
M. Bakhtoor, and M. Momeny, “Learning-to-augment incorporated
noise-robust deep CNN for detection of COVID-19 in noisy X-ray
images,” Journal of Computational Science, vol. 63, p. 101763, 2022.

M. Momeny, A. A. Neshat, M. A. Hussain, S. Kia, M. Marhamati, A.
Jahanbakhshi, and G. Hamarneh, “Learning-to-augment strategy using
noisy and denoised data: Improving generalizability of deep CNN for
the detection of COVID-19 in X-ray images,” Computers in Biology and
Medicine, vol. 136, p. 104704, 2021.

J. Liu, N. Dey, N. Das, R. Gonzalez Crespo, F. Shi, and C. Liu, “Brain fMRI
segmentation under emotion stimuli incorporating attention-based deep
convolutional neural networks,” Applied Soft Computing, vol. 122, p.
108837, 2022.

S. Kadry, E. Herrera-Viedma, R. Gonzalez Crespo, S. Krishnamoorthy,
and V. Rajinikanth, “Automatic detection of lung nodule in CT scan slices
using CNN segmentation schemes: A study,” Procedia Computer Science,
vol. 218, pp. 2786-2794, 2023.

N. Gessert, T. Sentker, F. Madesta, R. Schmitz, H. Kniep, I. Baltruschat,
and A. Schlaefer, “Skin lesion classification using CNNs with patch-based
attention and diagnosis-guided loss weighting,” IEEE Transactions on
Biomedical Engineering, vol. 67, no. 2, pp. 495-503, 2019.

J. Kawahara, A. BenTaieb, and G. Hamarneh, “Deep features to classify
skin lesions,” in 2016 IEEE 13th International Symposium on Biomedical
Imaging (ISBI), Prague, Czech Republic, 2016, pp. 1397-1400.

E. H. Mohamed and W. H. El-Behaidy, “Enhanced skin lesions
classification using deep convolutional networks,” in 2019 Ninth
International Conference on Intelligent Computing and Information
Systems (ICICIS), Cairo, Egypt, 2019, pp. 180-188.

M. A. Al-Masni, D. H. Kim, and T. S. Kim, “Multiple skin lesions
diagnostics via integrated deep convolutional networks for segmentation
and classification,” Computer Methods and Programs in Biomedicine,
vol. 190, p. 105351, 2020.

S. Jinnai, N. Yamazaki, Y. Hirano, Y. Sugawara, Y. Ohe, and R. Hamamoto,
“The development of a skin cancer classification system for pigmented
skin lesions using deep learning,” Biomolecules, vol. 10, no. 8, p. 1123,
2020.

W. Sae-Lim, W. Wettayaprasit, and P. Aiyarak, “Convolutional neural
networks using MobileNet for skin lesion classification,” in 2019 16th
International Joint Conference on Computer Science and Software
Engineering (JCSSE), Chonburi, Thailand, 2019, pp. 242-247.

S. S. Chaturvedi, K. Gupta, and P. S. Prasad, “Skin lesion analyser:
an efficient seven-way multi-class skin cancer classification using
MobileNet,” in International Conference on Advanced Machine Learning
Technologies and Applications, Springer, Singapore, 2020, pp. 165-176.
Harangi, B., Baran, A., & Hajdu, A. (2018, July). Classification of skin



[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

(39]

(40]

(41]

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 9, NO5

lesions using an ensemble of deep neural networks. In 2018 40th annual
international conference of the IEEE engineering in medicine and biology
society (EMBC) (pp. 2575-2578). IEEE.

J. Steppan and S. Hanke, “Analysis of skin lesion images with deep
learning,” arXiv preprint arXiv:2101.03814, 2021.

P. Tschandl, C. Rosendahl, and H. Kittler, “The HAM10000 dataset, a large
collection of multi-sources dermatoscopic images of common pigmented
skin lesions,” Scientific Data, vol. 5, no. 1, pp. 1-9, 2018.

N. C. Codella, D. Gutman, M. E. Celebi, B. Helba, M. A. Marchetti, S. W.
Dusza, and A. Halpern, “Skin lesion analysis toward melanoma detection:
A challenge at the 2017 international symposium on biomedical imaging
(ISBI), hosted by the international skin imaging collaboration (ISIC),” in
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI
2018), Washington, DC, USA, 2018, pp. 168-172.

M. Combalia, N. C. Codella, V. Rotemberg, B. Helba, V. Vilaplana, O.
Reiter, and J. Malvehy, “Bcn20000: Dermoscopic lesions in the wild,”
arXiv preprint arXiv:1908.02288, 2019.

T. Hu, M. Khishe, M. Mohammadi, G.-R. Parvizi, S. H. Taher Karim,
and T. A. Rashid, “Real-time COVID-19 diagnosis from X-Ray images
using deep CNN and extreme learning machines stabilized by chimp
optimization algorithm,” Biomedical Signal Processing and Control, vol.
68, Article 102764, 2021.

H. Sharma, J. S. Jain, P. Bansal, and S. Gupta, “Feature extraction and
classification of chest X-Ray images using CNN to detect pneumonia,” in
2020 10th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), Noida, India, 2020, pp. 227-231.

M. Heidari, S. Mirniaharikandehei, A. Z. Khuzani, G. Danala, Y. Qiu, and
B. Zheng, “Improving the performance of CNN to predict the likelihood
of COVID-19 using chest X-ray images with preprocessing algorithms,”
International Journal of Medical Informatics, vol. 144, p. 104284, 2020.
M. V. Madhavan, A. Khamparia, D. Gupta, S. Pande, P. Tiwari, and M.
S. Hossain, “Res-CovNet: An internet of medical health things driven
COVID-19 framework using transfer learning,” Neural Computing and
Applications, pp. 1-14, 2021.

R. Sandeep, K. Vishal, M. Shamanth, and K. Chethan, “Diagnosis of visible
diseases using CNNs,” in Proceedings of International Conference on
Communication and Artificial Intelligence, Springer, 2022, pp. 459-468.
K. Glock, C. Napier, T. Gary, V. Gupta, J. Gigante, W. Schaffner, and Q.
Wang, “Measles rash identification using transfer learning and deep
convolutional neural networks,” in 2021 IEEE International Conference
on Big Data (Big Data), Orlando, FL, USA, 2021, pp. 3905-3910.

M. M. Ahsan, M. R. Uddin, M. Farjana, A. N. Sakib, K. A. Momin, and S. A.
Luna, “Image data collection and implementation of deep learning-based
model in detecting monkeypox disease using modified VGG16,” arXiv
preprint arXiv:2206.01862, 2022.

C. Sitaula and T. B. Shahi, “Monkeypox virus detection using pre-trained
deep learning-based approaches,” Journal of Medical Systems, vol. 46, no.
11, pp. 1-9, 2022.

V. Kumar, “Analysis of CNN features with multiple machine learning
classifiers in diagnosis of monkeypox from digital skin images,” medRxiv,
2022. [CrossRef].

S. Magsood and R. DamaSevicius, “Monkeypox detection and
classification using deep learning-based features selection and fusion
approach,” in 2023 IEEE International Systems Conference (SysCon),
Vancouver, BC, Canada, 2023, pp. 1-8.

M. Hussain, M. A. Khan, R. Dama3evicius, A. Alasiry, M. Marzougui,
M. Alhaisoni, and A. Masood, “SkinNet-INIO: multiclass skin lesion
localization and classification using fusion-assisted deep neural networks
and improved nature-inspired optimization algorithm,” Diagnostics, vol.
13, no. 18, p. 2869, 2023.

S. N. Ali, M. Ahmed, J. Paul, T. Jahan, S. M. Sani, N. Noor, and T. Hasan,
“Monkeypox skin lesion detection using deep learning models: A
feasibility study,” arXiv preprint arXiv:2207.03342, 2022.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
...and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

D. Bala and M. S. Hossain, “Monkeypox Skin Images Dataset (MSID),”
Mendeley Data, V6, 2023. doi: 10.17632/r9bfpnvyxr.6.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 770-778.

(42]

(43]

(4]

(45]

[46]

(47]

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 4510-4520.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks”, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 2261-2269.

F. Chollet, “Xception: Deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 1251-1258.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
2818-2826.

P. Pandiyan, R. Thangaraj, M. Subramanian, R. Rahul, M. Nishanth, and
L. Palanisamy, “Real-time monitoring of social distancing with person
marking and tracking system using YOLO V3 model,” International
Journal of Sensor Networks, vol. 38, no. 3, pp. 154-165, 2022.

Dr. S. Sadesh

Dr. S. Sadesh is presently working as a Professor & Head in
the Department of Artificial Intelligence and Data Science
at Velalar College of Engineering and Technology. His
areas of interest are Web Mining, Data Mining and Data
Analytics. He has published 23 papers in International
Journals.

Dr. Rajasekaran Thangaraj

Rajasekaran Thangaraj received his Ph.D in the area of
Deep Learning from Anna University in the year 2022.
He has published 25 articles in reputed International
Journals and presented 18 papers at various International
Conferences. He published 4 book chapters and 5 Indian
patents.

Dr. Pandiyan P

Pandiyan P received his PhD Degree in Instrumentation
and Control Engineering from the National Institute
of Technology. His research interests include design
and simulation of MEMS based logic devices, Energy
harvesting and Artificial Intelligence.

Dr. R. Devi Priya

Dr. R. Devi Priya is working as professor in the department
of Computer Science and Engineering in KPR Institute of
Engineering and Technology and associated with Research
Centre for IoT and Artificial Intelligence. She has published
more than 60 papers in reputed journals and conferences.

Dr. Palanichamy Naveen

Naveen P. completed his Ph.D. in the field of Image
Processing and Machine Learning from Kalasalingam
Academy of Research and Education. He has about
13+ years of teaching experience at various levels and
is currently holding the responsibility of Coordinator
- Sponsored Research in the Centre for Research and
Development, as well as the position of Assistant Professor

in the Department of Electrical and Electronics Engineering at KPR Institute of
Engineering and Technology, Coimbatore, India. His research interests include
Image Processing and Machine Learning. He has published around 25 papers
in International Journals and International Conferences. He also published 4
patents.

-140 -



