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Nowadays, the 3D individual tree reconstruction has played a significant role in the phenotypic study of trees. This
paper proposes a new automatic method for extracting skeletons of individual trees and reconstructing 3D models.
Firstly, the Euclidean clustering is performed to obtain center points of candidate branch regions. Then, the initial
skeletons of LiDAR point clouds are obtained by slicing clusters in three dimensions. Secondly, skeleton points
are completed by the proposed branch tracking. Then, the radius of the branches is accurately estimated from the
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branches. Thirdly, optimal points are interpolated in appropriate directions to refine skeletons of individual trees.
Then, the Laplacian algorithm is conducted for smoothing branches. After that, optimal geometric shapes are

formulated to reconstruct the final 3D tree models. Experimental results show that the average accuracy of our
individual tree models is up to 97.49%, which shows a promising algorithm in 3D tree reconstructions.

I. INTRODUCTION

ITH the rapid development of technologies in the fields of smart

city, agriculture and forestry, the pace of 3D reconstruction
has accelerated significantly. Fine 3D geometric models of trees,
such as crowns and branches, have become an indispensable and
important part of vegetation study. Remote sensing technology has
been extensively used in the acquisition of forest information and
land cover data since the advent of various remote sensing data, such
as satellite imagery and LiDAR (Light Detection and Ranging) point
clouds [1], which encourages researchers to pay more attention to
the 3D real structure of trees. Considering the advantages of LIDAR
scanning technology, i.e. the active sensor principle, the independence
of sunlight and weather conditions, and the potential to map wide
regions in short time [2], it is possible to display a large and complex
regions of vegetation. The development of 3D laser data processing
not only promotes the three-dimensional digital modeling technology,
but also provides the possibility for tree reconstruction accurately and
efficiently [3]. Due to the complexity of tree structures, constructing
3D models from LiDAR point clouds is still a challenging task [4].

Therefore, the purpose of this work is to build a three-dimensional
model of a tree accurately from handheld LiDAR point clouds. For
this aim, we take Ginkgo, Prunus and Platanus as experimental data.
The main steps of this paper are as follows: Firstly, we pre-process
the data obtained from the scanner and then extract skeleton points
by a clustering algorithm and a slicing method. Secondly, we use
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the branch tracing algorithm to locate the branch of the skeleton
points. The radius of skeletons is estimated by using the least squares
method. Thirdly, the skeleton points and the corresponding radius are
interpolated and optimized to complete skeletons. Finally, by forming
various geometric shapes utilizing the acquired skeleton points and
radius information, the 3D model of individual trees is constructed.
Contributions of this work are as follows.

a) To find the clustering center points, we suggest a clustering
algorithm, and then we use the slicing method to locate the
corresponding skeleton points from the X, Y, and Z axes.

b) To ensure the local integrity of trees, a novel algorithm is suggested
to branch and track the skeleton points. We propose the geometric
shapes method of tree modeling, which makes the modeling more
accurate.

II. RELATED WORK

Various laser scanning technologies have been proposed to
acquire and reconstruct 3D structural information of trees based on
the collected 3D point clouds. Depending on the human-computer
interaction in data processing, there are two broad categories. The
one is modeling by manual or semi-automated ways, and the other is
modeling automatically. Those semi-automated methods often require
reference information to be extracted from tree point clouds. These pre-
calculated parameters can be input into the existing tree models, so that
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Fig. 1. Overview of the proposed approach.

the 3D tree model can be constructed with high precision. However,
those methods are less efficient and realistic [5], which fail to use
automatic algorithms for 3D geometric reconstruction. Most automatic
approaches [6] reconstruct 3D trees by extracting skeletons first, and
then they try to provide a better visualization of the targets’ geometry
and topology structure. Therefore, Verroust et al. [7] introduced a
method for extracting accurate skeletal curves from the collection
of unorganized scattered points lying on a surface. This method can
help extract the skeleton points, but the output of this method is more
sensitive to data incompleteness and changes in density. Xu et al. [8]
proposed an algorithm for reconstructing a network model from the
original scanned point clouds of individual trees. Point clouds are
divided into segments by measuring distances, and then points in
each segment are clustered to obtain skeleton points. However, it still
requires key parameters to be specified by the user.

Livny et al. [9] constructed and optimized the skeleton points
based on the physiological structure of the tree. Although their
method avoids the parameter tuning, they lack sufficient quantitative
evaluation experiments. Pfeifer et al. [10] used a cylindrical fitting
algorithm to obtain points of skeletons. The radius of branches
is based on the achieved skeletons. After that, they used a B spline
curve to fit the orientation of the cylindrical model to complete the
obtained 3D tree models. However, this algorithm applies to the 3D
reconstruction of trees with simple topological structures rather than
constructs models with fine tree structure details [8]. Li et al. [11]
proposed the skeleton translation method which effectively ensures
the centralization of the extracted skeletons, but this method cannot
deal with horizontal branching skeleton. Jang et al. [12] utilized the
graph geodesic distance to contract the sampling points so that the
initial skeleton is extracted while preserving the detailed topology.
However, the issues lie in the shrinkage process of the point cloud for
general right-angled objects.

III. SKELETON EXTRACTION AND 3D MODELING

There are four primary steps in the 3D reconstruction of trees
as shown in Fig. 1. The input data are point clouds collected by a
handheld scanner. Firstly, we separate the individual trees from the
input data, and obtain center points by a clustering algorithm. We slice
input point clouds at a fixed distance from X-axis, Y-axis and Z-axis.

The achieved point clouds are regarded as initial skeletons. Secondly,
a branch tracking algorithm is proposed to find the optimal path
from each point to the root as the optimal branch, and the skeleton
is captured and the radius is estimated by using the least squares
fitting. Thirdly, the achieved skeleton and radius are interpolated and
smoothed based on Laplacian smoothing, which makes the skeleton
complete and smooth to facilitate the expansion of the skeleton into
a realistic 3D model. Finally, we reconstruct the 3D trees based on
the prior knowledge of tree growing. We present a geometric shapes
method to optimize the structure of trees locally and globally, which
enhances the visual effect and improves the accuracy.

A. Candidate Skeleton Points Extraction

Point clouds are regarded as the basis of 3D tree reconstruction,
and the data quality is important to the accuracy of the later modeling.
The handheld LiDAR scanning system has good practicability and
high flexibility in data collection. It changes the relative position of the
scanner and the target object, which successfully obtains the whole
scene in all directions. In addition, street trees are an important part
of urban ecosystems and urban landscapes [13]. Therefore, we use a
handheld LiDAR scanner to obtain the point clouds of the road scene
covered by street trees. Our preprocessing step is used to segment the
point clouds from an individual tree and remove overlapping point
clouds, such as ground points and other objects.

In order to reconstruct trees conveniently, we obtain point clouds
of an individual tree by using the existing point clouds processing
method [14]. Due to the environmental factor, the point cloud data
obtained often has some noise points [15]. Therefore, we also need to
process the noise points to establish the basis for modeling realistic
3D tree models. The key idea is to remove outlier points based on the
mean and variance of points’ coordinates.

Natural trees have complex geometry and topology structures, so
the point clouds obtained from the scanning system are massive and
unorganized. As we know, a skeleton is a practical way to represent
the topological properties of a 3D model. In order to reduce the
calculation complexity, we slice and cluster the input point cloud data
for searching candidate skeleton points of individual trees. The tree
skeleton as shown in Fig. 2(a) is the basis of tree visualization and
reconstruction. In this work, the skeleton points of an individual tree
are defined at the center of the tree’s branches as shown in Fig. 2(b).
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Fig. 2. Formulation of skeletons. (a) Branches of an individual tree. (b)
Skeletons of an individual tree.

(a) threshold=0.06 (b) threshold=0.1 (c) threshold=0.15

Fig. 3. Results using different threshold values.

() (b)

Fig. 4. Demonstration of slicing methods and results. (a) The slicing direction
for obtaining skeleton points. (b) The skeleton point sets.

Firstly, the candidate skeleton regions are obtained based on the
Euclidean clustering. A threshold is set where if several points are
neighboring in a cluster, they are merged. This reduces unnecessary
calculations. We set the default threshold to 0.1. If the threshold is
set too large, the sampled point cloud data is too small, so the tree’s
topology cannot be correctly extracted. If the threshold is set too
small, there are too many initial skeleton points, which increases the
calculation amount and fails to improve efficiency. As shown in Fig. 3.
Then, we slice points in the direction of the X axis, Y axis and Z axis,
respectively. The step size for slicing in each direction is 0.1. We define
points where the X axis intersects the Z axis and the points where the
Y axis intersects the Z axis as candidate skeleton points. As shown in
Fig. 4(a). To obtain more information on trees, we rotate point clouds of
an individual tree by using a transformation matrix as shown in Eq. (1).

cos¢p —sing 0
T=|sing cos¢p 0
0 0 1

(1)
where ¢ is the rotation angle, and we set ¢ as £.

Finally, all candidate skeleton points are merged which serve as
initial target tree points as shown in Fig. 4(b).

B. Branch Tracing and Radius Estimation

In the growth perspective of trees, neighboring points tend to be
from the same branch. Therefore, we consider the optimal path from
each point to the root as the basis for branch tracking. We evaluate the
weight of each path from the current point to the root, compare the
weight of each path and the path with the lowest weight is regarded
as the optimal branch for the current point. As shown in the following

Eq.(2)-(4).

TD(p;, 1) = min{dis(p;, D), k}, 1 € S(p) )
MD(p;, t;) = min{dis(p;, t;), k} 3)
Path = Z{Min{TD 0 D), MD (p;, £)})

=0 4

In the formulation, p, is the current point, t is the point in the set
for which the optimal branch is not currently found. S(P) is the set
includes three points which has the closest Euclidean distance to the
current p,. The dis(p, t)is the Euclidean distance from p, to t Path is the
path index of the obtained branch, and k is a relative large constant.

Algorithm 1. Find optimal branch

Input: The matrix M is used to store the coordinates of skeleton
points.

Output: The optimal vector Path

1: Initialize the value of a candidate branch from root for each point
p, %y, 2) as dis,;= 0;

for Eachi € Mdo

3: Calculate the distance between two neighboring points in groups
of the nearest q points;

4:  Formulate the index of neighboring points into the set N;

5: end for

6: Create the set fb of all candidate points.

7: Create the set tb of all non-candidate points.

8. while tb is not NULL

9: forEachi€fbdo

10:  Consider i as the leading point and formulate neighbors of i

into the set N;

11:  for Eachj € tb do

12: if j € N then return Dis <— Dis(p,j)

13: end if

14: Dis_plus <— Dis + dis

15: if MIN > Dis_plus then return MIN «— Dis plus, i’ < i, j" < j

16: end if

17:  end for

18:  end for

19: disj* «— MIN

20:  Addj’ into the set fb;

21:  Delete j" from the set pb;

22:  Path(") « i

23: end while

The method of computing skeleton branches is shown in
Algorithm 1. We input the coordinates of the point cloud, calculated
the Euclidean distance between points, and selected the spatially
closest 10 points to each point to form the matrix N. We defined fb as
the set of points and its branches have been assigned, and tb as the set
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of points and its branches are to be assigned. The sum of points in tb
and fb are the total number of skeleton points of a tree. Every point
in fb is taken as the current point, and the points in tb are traversed
to determine whether they belong to the neighboring points of the
current point in N. If correct, the point is the child point of the current
point. If not, we found the nearest neighboring point to the current
point in tb as its child point.

It is worth noting that the number of neighboring points ¢ may
depend on the tree species. In terms of arbor forests, they usually have
straight and thick stems, thus, the value ¢ tends to be large (in our case
we set g as 10). In the case of bamboo forests or shrubs, q should be
decreased to capture more details of thin branches, while at the cost of
being time-consuming.

The radius of the branch corresponding to the skeleton point is
estimated by using empirical formulation or certain rules. Practically,
the radius obtained by these methods does not show the true trunk
radius. The branches of the tree can be approximated as consisting of
many cylinders. Each cylinder has different sizes of radius. Based on
this feature, the least squares fitting method is used to estimate the
radius of the corresponding branches at the skeleton point. When the
number of skeleton points corresponds to less than three, the radius
obtained by the least squares fitting method will be inaccurate. It will
lead to imprecise reconstruction. Thus, the radius of individual points
is reacquired by Eq.(5),

T, =1, X (l—c %
©rTh ®)
where r, indicates the radius of the current sub-skeleton point. The
r indicates the radius of the current parent skeleton point. The I_is
the length of the branch supported by the sub-skeleton point. The I,
is the length of the branch supported by the parent skeleton point.
The radius of all skeleton points are obtained by repeating the above-
mentioned method.

C. Path Interpolation and Optimization

The tree skeleton visualization is a powerful tool for illustrating
the structure of trees, because its ability to describe the topology and
geometry of a tree in a simple and dense form [16]. However, complex
environment may weaken the roots or stems of trees [17]. Besides,
foliage shading causes LiDAR data to not portray the structural
variables of trees in detail [18], so there are still errors in the obtained
skeleton point clouds. These errors create gaps between skeleton
points, leading to incoherent skeleton connections and affecting the
modeling results, so we interpolate and optimize the tree skeleton.
Firstly, we interpolate each branch to ensure obtaining a more
complete tree skeleton structure. According to the Euclidean distance
between two adjacent points, a point is interpolated for every 0.1m in
the space, and there is a total of six directions as shown in matrix M
of Eq. (6). Equation 6 represents the positive direction of the X axis,
the positive direction of the Y axis, the positive direction of the Z axis,
the negative direction of the X axis, the negative direction of the Y
axis, and the negative direction of the Z axis in the three-dimensional
coordinate.

1 -1 0 0 0 0
M=o 0 1 -1 0 0
00 0 0 1 -1

(©)

The radius of the interpolation point is assigned according to the
number of interpolation points and the distance between the two
points as shown in Eq. (7).

(rc - rp)

= m

Xi+r,

@)

In Eq.(7), n is the number of interpolation points, r, indicates the
radius of the current point, r, indicates the radius of the previous
point, and i indicates that the current point is the ith interpolation
point between two points.

Then, we use the Laplacian smoothing method to smooth the
skeleton, as shown in Eq. (8), which makes the lines between skeleton
points smoother and consistent with the bending condition of real tree
branches.

Point; ; + Point;

Point; = Point; + oc( 5

- Pomti) ®)
where Point, | and Point,,, are two points before and after Point,, ais
the coefficient of the Laplacian smoothing method.

D. Branch Modeling

A cylinder can be regarded as a combination of a circular cross-
section and a central axis perpendicular to the cross-section. The
natural branches of trees are usually cylindrical bodies of different
thicknesses. However, the cylindrical shape makes the tree trunk
incoherent in modeling. Therefore, we propose a new model using
geometrical shapes. Based on the complete skeleton generated,
we take each skeleton point as the center of a circle. We define the
direction vector from a point in the skeleton to its parent as the local
z-axis as shown in Fig. 5(a). A series of discrete points on the cross-
section circle are constructed according to the radius parameters. As
calculated in Eq. (9),

x=R-cos@
y=R-sinf
z=0

©)

where R is the radius of the skeleton point and 6 is the angle
between the polar axis and the X axis in polar coordinates. The
discrete points are transformed by rotation in the skeleton direction to
obtain absolute coordinates.

Fitting the tree by using geometrical shapes can address the problem
of gaps between branches. The effect is shown in Fig.5 (b). Finally, we
use the quadrilateral mesh surface to reconstruct the geometric model
of the tree.

@ (b)

Fig. 5. Local coordinate system. (a) shows the cross-sectional circle, (b) shows
the geometrical shapes fitting.
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Fig. 6. Results of individual tree modeling. (a) and (b) show the Ginkgo. (c) and (d) show the Prunus. (e) and (f) show the Platanus.

IV. EXPERIMENTS AND ANALYSIS

This section tests the proposed method. This experiment is carried
out on the Windows 10 operating system, with a memory size of 64GB.
We utilize a CPU powered by Intel(R) Xeon(R) W-2145 @3.70GHZ.
All experiments as well as analysis are run on MATLAB R2019b.
Experimental data are collected by GeoSLAM ZEB-HORIZON. This
portable laser scanner is flexible and efficient, which scans points
at 300,000 points per second at the field of view 3600x270-. The data
collection is convenient and brings fewer point registration errors.
Although our data are collected from the side-view, our system
scanner distance can be over 100 meters, which provides abundant
information for our modeling. The scanner is simple to use and
provides easy access to collect the points of street trees. The input
scene is located at Nanjing Forestry University, Nanjing, China. In this
part, we qualitatively and quantitatively assess the proposed strategy.

A. Visualization

This part focuses on evaluating our method using an artificial visual
approach. We display the results of Ginkgo, Prunus and Platanus. The
first column shows the original point clouds of investigated individual
trees, the second column shows the skeleton of tree point clouds, and
the third column shows our modeling results. As shown in Fig. 6, we
display a better tree morphology evidenced by the completeness and
correctness of reconstructions. Technique used in this research is
capable of modeling a variety of tree species and is generalizable to
trees with various geometries and typologies.

B. Ablation Experiments

To verify the validity of our optimization and modeling, we have
made the following two sets of ablation experiments. The first set of

experiments compares the optimized reconstruction with the non-
optimized reconstruction as shown in the figure. We notice that the
non-optimized branches are not modeled smoothly and the results
do not conform to the growth pattern of trees in nature as shown
in Fig. 7. The optimized modeling has a natural bend in branches,
which shows the tree’s topology in detail. We find branches fitted
into incoherent cylinders depending on the location of the points and
the size of the radius.

In the second set of experiments, we used different primitives
for modeling. Fig. 8 (a-f) shows the modeling by using cylindrical
primitives. Fig. 8 (g-1) shows the modeling by using geometrical
shapes. The results show that there is a gap between cylinders, which
does not allow for accurate modeling. Modeling with cones as the
primitive generates a high-quality individual tree model.

C. Quantitative Analysis

We use Eq.(10) to calculate the accuracy of the output model,
including the overlapping of the point clouds to the individual 3D
branch model. In the evaluation, the accuracy is calculated by the ratio
of correctly extracted points as shown in Eq.(10).

Accuracy = % Z 5(pipj)

= (10)

where m is the number of model points. p, indicates the points of

the tree model, and p, indicates the input points. § (p, p) is a binary

function. If the Euclidean distance between p, and p, is less than

accuracy, 6 is 1, otherwise, it turns out to be 0. Table I shows that the
average completeness of the experiment reached 97.49%.
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(a) Ginkgo#1 w/o (b) Prunus#1 w/o (d) Ginkgo#2 w/o (e) Prunus#2 w/o (f) Platanus#2 w/o

(g) Ginkgo#1 w/ (h) Prunus#1 w/ (i) Platanus#1 w/ (j) Ginkgo#2 w/ (k) Prunus#2 w/ (1) Platanus#2 w/

Fig. 7. Comparison of results before and after optimization. (a-f) show the reconstruction results without being optimized (without optimization, w/0). (g-1) show
the reconstruction results with being optimized (with optimization. w/).

(a) Ginkgo#1
built by cylinders

(c) Platanus#1 built (d) Ginkgo#2
by cylinders built by cylinders

(f) Platanus#2 built

(b) Prunus#1 built by cylinders by cylinders

(e) Prunus#2 built by cylinders

(g) Optimized
Ginkgo#1

(i) Optimized (j) Optimized
Platanus#1 Ginkgo#2

(1) Optimized

(h) Optimized Prunus#1 Platanus#2

(k) Optimized Prunus#2

Fig. 8. The modeling results with different geometric structures. (a-f) show the reconstruction by using cylinders. (g-1) show the reconstruction results by using
the proposed geometrical shapes.
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Fig. 9. The modeling results by using different ways.

TABLE I. QUANTITATIVE RESULTS FOR GINKGO, PRUNUS AND PLATANUS TREES

ID Points Species Complexity Accuracy
a 945333 1 M 97.69%
b 632514 1 M 99.52%
c 1972532 2 D 97.64.%
d 2046869 2 D 99.67%
e 93768 3 M 92.53%
f 95923 3 M 97.92%

D. Comparisons

This section shows the comparison of our method and other
commonly used approaches to further show our advantages and
disadvantages.

Firstly, we show the comparison of our method with the Circular
Truncated Cones Tree [19] and TreeQSM [20]. As shown in Fig. 9,
the Circular Truncated Cones Tree (CT Cones Tree) utilizes optimized
circular frustum to create the three-dimensional structure of
skeletons. It partitions the tree into small blocks after preprocessing
and interpolates directly. TreeQSM employs cylinders of various sizes
for each branch, which are mostly straight. Thus, the reconstructed
3D model lacks realism. However, we find the best path for each point
cloud, and use the Laplace algorithm for smoothing operation. Our
approach ensures that the model is according to the tree growth, and
is complete in the final model presentation.

Secondly, we show the quantitative comparison. We use Eq.(9) to
calculate the accuracy of tree reconstructions by using CT Cones Tree,
TreeQSM and our method. Table I demonstrates that the accuracy
of our results is more than 90%, and better than CT Cones Tree

and TreeQSM. Therefore, more accurate geometric and topological
structures can be obtained by using our modeling method.

In the case of the Platanus (e and f of Table II), the stem located
centrally is clearly visible based on the clustered centers, and the
majority of extended branches are concentrated toward the tree’s
apex. The slender branches possess a low point cloud density, which
suggests that TreeQSM may not be fully applicable. Our method,
however, determines the optimal path for each point, utilizes its
position information in the tracking process, and results in more
realistic modeling. Consequently, the accuracy of Platanus (e and f) is
significantly enhanced.

In table I, the ‘ID’ indicates the sequence number of trees and
corresponds to the result in Fig. 6. The ‘Points’ indicates the input
data. The ‘Species’ includes Ginkgo (Ginkgo biloba L.), Prunus (Prunus
yedoensis Matsum.), and Platanus (Platanus orientalis L.). ‘M’ means
moderate modeling complexity and ‘D’ means difficult modeling
complexity. Our ranking system for M and D is determined by the
number of original point clouds. Point clouds exceeding 100,000
belong to category D, whereas those between 10,000 and 100,000
belong to category M.

TABLE II. QUANTITATIVE RESULTS FOR GINKGO, PRUNUS AND PLATANUS TREES

CT Cones Tree

D Points TreeQSM Ours Increase
945333 97.28% 92.39% 97.69%  +0.41%

b 632514 92.31% 92.06% 99.52%  +7.21%
¢ 1972532 95.04% 81.19% 97.64.% +2.6%
d 2046869 93.97% 90.77% 99.67% +5.7%

e 93768 64.02% 39.43% 92.53%  +28.51%
f 95923 92.96% 53.64% 97.92%  +4.96%
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E. Limitations and Future Works

Our technique produces a precise 3D tree model. However, there
are still problems that require additional study.

In the data collection, in order to reduce the impact of different types
of foliage on the modeling, we treat the foliage as noise, because the
shape of foliage is quite different and presents especially blur in the
collection caused by wind. One simple way is to use a fixed template to
directly paste foliage in dense points around trunks. However, it does
not demonstrate the correct tree structures and it is difficult to evaluate.

In the modeling process of an individual tree, it is easy to model the
main trunk, and it is difficult to model multilevel branches, because there
are some small gaps at the connection between the branches. In addition,
due to the limited modeling methods, some branches with a large degree
of curvature are difficult to be completely restored occasionally. These
challenges will need to be further addressed in future works. The 3D
single tree model reconstructed in this paper be extended and applied
to scenes of rapid reconstruction of large trees, providing reliable
model support for digital cities and virtual forestry. Besides, future
work will also focus on the extension of our work on different species
of trees, especially on the fusion of drone point clouds and handheld
point clouds to improve the top-view modeling for tall trees.

V. CONCLUSION

Considering trees as one of the most significant elements of
the natural world, it is significant to study 3D trees precisely and
effectively. We propose a method to obtain skeleton branches and then
reconstruct 3D tree models. Points are sampled by clustering, and then
the data obtained from the slices are used as our skeleton points. To
ensure the local optimum in modeling, we track the whole skeleton
for searching different branches and estimating the radius of skeleton
points by the least squares fitting method. The skeleton points are
interpolated in different directions, which guarantees the curvature
of tree branches is accurate. The experimental results show that the
average accuracy of individual tree data is up to 97.49% based on the
proposed geometrical shapes method, which provides a promising
approach for 3D tree modeling.
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