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Abstract

Nowadays, the 3D individual tree reconstruction has played a significant role in the phenotypic study of trees. This 
paper proposes a new automatic method for extracting skeletons of individual trees and reconstructing 3D models. 
Firstly, the Euclidean clustering is performed to obtain center points of candidate branch regions. Then, the initial 
skeletons of LiDAR point clouds are obtained by slicing clusters in three dimensions. Secondly, skeleton points 
are completed by the proposed branch tracking. Then, the radius of the branches is accurately estimated from the 
branches. Thirdly, optimal points are interpolated in appropriate directions to refine skeletons of individual trees. 
Then, the Laplacian algorithm is conducted for smoothing branches. After that, optimal geometric shapes are 
formulated to reconstruct the final 3D tree models. Experimental results show that the average accuracy of our 
individual tree models is up to 97.49%, which shows a promising algorithm in 3D tree reconstructions.
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I.	 Introduction

WITH the rapid development of technologies in the fields of smart 
city, agriculture and forestry, the pace of 3D reconstruction 

has accelerated significantly. Fine 3D geometric models of trees, 
such as crowns and branches, have become an indispensable and 
important part of vegetation study. Remote sensing technology has 
been extensively used in the acquisition of forest information and 
land cover data since the advent of various remote sensing data, such 
as satellite imagery and LiDAR (Light Detection and Ranging) point 
clouds [1], which encourages researchers to pay more attention to 
the 3D real structure of trees. Considering the advantages of LiDAR 
scanning technology, i.e. the active sensor principle, the independence 
of sunlight and weather conditions, and the potential to map wide 
regions in short time [2], it is possible to display a large and complex 
regions of vegetation. The development of 3D laser data processing 
not only promotes the three-dimensional digital modeling technology, 
but also provides the possibility for tree reconstruction accurately and 
efficiently [3]. Due to the complexity of tree structures, constructing 
3D models from LiDAR point clouds is still a challenging task [4].

Therefore, the purpose of this work is to build a three-dimensional 
model of a tree accurately from handheld LiDAR point clouds. For 
this aim, we take Ginkgo, Prunus and Platanus as experimental data. 
The main steps of this paper are as follows: Firstly, we pre-process 
the data obtained from the scanner and then extract skeleton points 
by a clustering algorithm and a slicing method. Secondly, we use 

the branch tracing algorithm to locate the branch of the skeleton 
points. The radius of skeletons is estimated by using the least squares 
method. Thirdly, the skeleton points and the corresponding radius are 
interpolated and optimized to complete skeletons. Finally, by forming 
various geometric shapes utilizing the acquired skeleton points and 
radius information, the 3D model of individual trees is constructed. 
Contributions of this work are as follows. 

a)	 To find the clustering center points, we suggest a clustering 
algorithm, and then we use the slicing method to locate the 
corresponding skeleton points from the X, Y, and Z axes.

b)	 To ensure the local integrity of trees, a novel algorithm is suggested 
to branch and track the skeleton points. We propose the geometric 
shapes method of tree modeling, which makes the modeling more 
accurate.

II.	 Related Work

Various laser scanning technologies have been proposed to 
acquire and reconstruct 3D structural information of trees based on 
the collected 3D point clouds. Depending on the human-computer 
interaction in data processing, there are two broad categories. The 
one is modeling by manual or semi-automated ways, and the other is 
modeling automatically. Those semi-automated methods often require 
reference information to be extracted from tree point clouds. These pre-
calculated parameters can be input into the existing tree models, so that 
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the 3D tree model can be constructed with high precision. However, 
those methods are less efficient and realistic [5], which fail to use 
automatic algorithms for 3D geometric reconstruction. Most automatic 
approaches [6] reconstruct 3D trees by extracting skeletons first, and 
then they try to provide a better visualization of the targets’ geometry 
and topology structure. Therefore, Verroust et al. [7] introduced a 
method for extracting accurate skeletal curves from the collection 
of unorganized scattered points lying on a surface. This method can 
help extract the skeleton points, but the output of this method is more 
sensitive to data incompleteness and changes in density. Xu et al. [8] 
proposed an algorithm for reconstructing a network model from the 
original scanned point clouds of individual trees. Point clouds are 
divided into segments by measuring distances, and then points in 
each segment are clustered to obtain skeleton points. However, it still 
requires key parameters to be specified by the user. 

Livny et al. [9] constructed and optimized the skeleton points 
based on the physiological structure of the tree. Although their 
method avoids the parameter tuning, they lack sufficient quantitative 
evaluation experiments. Pfeifer et al. [10] used a cylindrical fitting 
algorithm to obtain points of skeletons. The radius of branches 
is based on the achieved skeletons. After that, they used a B spline 
curve to fit the orientation of the cylindrical model to complete the 
obtained 3D tree models. However, this algorithm applies to the 3D 
reconstruction of trees with simple topological structures rather than 
constructs models with fine tree structure details [8]. Li et al. [11] 
proposed the skeleton translation method which effectively ensures 
the centralization of the extracted skeletons, but this method cannot 
deal with horizontal branching skeleton. Jang et al. [12] utilized the 
graph geodesic distance to contract the sampling points so that the 
initial skeleton is extracted while preserving the detailed topology. 
However, the issues lie in the shrinkage process of the point cloud for 
general right-angled objects.

III.	Skeleton Extraction and 3D Modeling

There are four primary steps in the 3D reconstruction of trees 
as shown in Fig. 1. The input data are point clouds collected by a 
handheld scanner. Firstly, we separate the individual trees from the 
input data, and obtain center points by a clustering algorithm. We slice 
input point clouds at a fixed distance from X-axis, Y-axis and Z-axis. 

The achieved point clouds are regarded as initial skeletons. Secondly, 
a branch tracking algorithm is proposed to find the optimal path 
from each point to the root as the optimal branch, and the skeleton 
is captured and the radius is estimated by using the least squares 
fitting. Thirdly, the achieved skeleton and radius are interpolated and 
smoothed based on Laplacian smoothing, which makes the skeleton 
complete and smooth to facilitate the expansion of the skeleton into 
a realistic 3D model. Finally, we reconstruct the 3D trees based on 
the prior knowledge of tree growing. We present a geometric shapes 
method to optimize the structure of trees locally and globally, which 
enhances the visual effect and improves the accuracy.

A.	Candidate Skeleton Points Extraction
Point clouds are regarded as the basis of 3D tree reconstruction, 

and the data quality is important to the accuracy of the later modeling. 
The handheld LiDAR scanning system has good practicability and 
high flexibility in data collection. It changes the relative position of the 
scanner and the target object, which successfully obtains the whole 
scene in all directions. In addition, street trees are an important part 
of urban ecosystems and urban landscapes [13]. Therefore, we use a 
handheld LiDAR scanner to obtain the point clouds of the road scene 
covered by street trees. Our preprocessing step is used to segment the 
point clouds from an individual tree and remove overlapping point 
clouds, such as ground points and other objects. 

In order to reconstruct trees conveniently, we obtain point clouds 
of an individual tree by using the existing point clouds processing 
method [14]. Due to the environmental factor, the point cloud data 
obtained often has some noise points [15]. Therefore, we also need to 
process the noise points to establish the basis for modeling realistic 
3D tree models. The key idea is to remove outlier points based on the 
mean and variance of points’ coordinates.

Natural trees have complex geometry and topology structures, so 
the point clouds obtained from the scanning system are massive and 
unorganized. As we know, a skeleton is a practical way to represent 
the topological properties of a 3D model. In order to reduce the 
calculation complexity, we slice and cluster the input point cloud data 
for searching candidate skeleton points of individual trees. The tree 
skeleton as shown in Fig. 2(a) is the basis of tree visualization and 
reconstruction. In this work, the skeleton points of an individual tree 
are defined at the center of the tree’s branches as shown in Fig. 2(b).

The Input Data
Candidate Skeleton

Points Extraction

Branch Tracing and
Radius Estimation

Path Interpolation
and Optimization Branch Modeling

(a) Branch Tracing

(b) Radius Estimation

Fig. 1. Overview of the proposed approach.
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(a) (b)

Fig. 2. Formulation of skeletons. (a) Branches of an individual tree. (b) 
Skeletons of an individual tree.

(a) threshold=0.06 (b) threshold=0.1 (c) threshold=0.15

Fig. 3. Results using different threshold values.

(a) (b)

Z

X

Y

Fig. 4. Demonstration of slicing methods and results. (a) The slicing direction 
for obtaining skeleton points. (b) The skeleton point sets.

Firstly, the candidate skeleton regions are obtained based on the 
Euclidean clustering. A threshold is set where if several points are 
neighboring in a cluster, they are merged. This reduces unnecessary 
calculations. We set the default threshold to 0.1. If the threshold is 
set too large, the sampled point cloud data is too small, so the tree’s 
topology cannot be correctly extracted. If the threshold is set too 
small, there are too many initial skeleton points, which increases the 
calculation amount and fails to improve efficiency. As shown in Fig. 3. 
Then, we slice points in the direction of the X axis, Y axis and Z axis, 
respectively. The step size for slicing in each direction is 0.1. We define 
points where the X axis intersects the Z axis and the points where the 
Y axis intersects the Z axis as candidate skeleton points. As shown in 
Fig. 4(a). To obtain more information on trees, we rotate point clouds of 
an individual tree by using a transformation matrix as shown in Eq. (1).

	 (1)

where ϕ is the rotation angle, and we set ϕ as .

Finally, all candidate skeleton points are merged which serve as 
initial target tree points as shown in Fig. 4(b).

B.	Branch Tracing and Radius Estimation
In the growth perspective of trees, neighboring points tend to be 

from the same branch. Therefore, we consider the optimal path from 
each point to the root as the basis for branch tracking. We evaluate the 
weight of each path from the current point to the root, compare the 
weight of each path and the path with the lowest weight is regarded 
as the optimal branch for the current point. As shown in the following 
Eq.(2)-(4).

	 (2)

	 (3)

	 (4)

In the formulation, pi is the current point, tj is the point in the set 
for which the optimal branch is not currently found. S(Pi) is the set 
includes three points which has the closest Euclidean distance to the 
current pi. The dis(pi, tj) is the Euclidean distance from pi to tj. Path is the 
path index of the obtained branch, and k is a relative large constant.

Algorithm 1. Find optimal branch

Input: The matrix M is used to store the coordinates of skeleton 
points.

Output: The optimal vector Path
1:   Initialize the value of a candidate branch from root for each point  
      pi (x, y, z) as  disi = 0; 

2:   for Each i ∈ M do
3:      Calculate the distance between two neighboring points in groups  
          of the nearest q points;
4:      Formulate the index of neighboring points into the set ℕ;

5:   end for
6:   Create the set fb of all candidate points.

7:   Create the set tb of all non-candidate points.

8:   while tb is not NULL

9:      for Each i ∈ fb do
10:     Consider i as the leading point and formulate neighbors of i  
           into the set ℕ;

11:      for Each j ∈ tb do
12:         if j ∈ ℕ then return Dis ← Dis(p,j)
13:          end if
14:          Dis_plus ← Dis + dis

15:          if MIN > Dis_plus then return MIN ← Dis_plus, i* ← i, j * ← j

16:          end if
17:       end for
18:      end for
19:      disj* ← MIN

20:      Add j *  into the set fb;

21:      Delete j *  from the set pb;

22:      Path(j * ) ← i* 

23: end while

The method of computing skeleton branches is shown in 
Algorithm 1. We input the coordinates of the point cloud, calculated 
the Euclidean distance between points, and selected the spatially 
closest 10 points to each point to form the matrix ℕ. We defined fb as 
the set of points and its branches have been assigned, and tb as the set 
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of points and its branches are to be assigned. The sum of points in tb 
and fb are the total number of skeleton points of a tree. Every point 
in fb is taken as the current point, and the points in tb are traversed 
to determine whether they belong to the neighboring points of the 
current point in ℕ. If correct, the point is the child point of the current 
point. If not, we found the nearest neighboring point to the current 
point in tb as its child point.

It is worth noting that the number of neighboring points q may 
depend on the tree species. In terms of arbor forests, they usually have 
straight and thick stems, thus, the value q tends to be large (in our case 
we set q as 10). In the case of bamboo forests or shrubs, q should be 
decreased to capture more details of thin branches, while at the cost of 
being time-consuming.

The radius of the branch corresponding to the skeleton point is 
estimated by using empirical formulation or certain rules. Practically, 
the radius obtained by these methods does not show the true trunk 
radius. The branches of the tree can be approximated as consisting of 
many cylinders. Each cylinder has different sizes of radius. Based on 
this feature, the least squares fitting method is used to estimate the 
radius of the corresponding branches at the skeleton point. When the 
number of skeleton points corresponds to less than three, the radius 
obtained by the least squares fitting method will be inaccurate. It will 
lead to imprecise reconstruction. Thus, the radius of individual points 
is reacquired by Eq.(5),

	 (5)

where rc indicates the radius of the current sub-skeleton point. The 
rp indicates the radius of the current parent skeleton point. The lc is 
the length of the branch supported by the sub-skeleton point. The lp 
is the length of the branch supported by the parent skeleton point. 
The radius of all skeleton points are obtained by repeating the above-
mentioned method.

C.	Path Interpolation and Optimization
The tree skeleton visualization is a powerful tool for illustrating 

the structure of trees, because its ability to describe the topology and 
geometry of a tree in a simple and dense form [16]. However, complex 
environment may weaken the roots or stems of trees [17]. Besides, 
foliage shading causes LiDAR data to not portray the structural 
variables of trees in detail [18], so there are still errors in the obtained 
skeleton point clouds. These errors create gaps between skeleton 
points, leading to incoherent skeleton connections and affecting the 
modeling results, so we interpolate and optimize the tree skeleton. 
Firstly, we interpolate each branch to ensure obtaining a more 
complete tree skeleton structure. According to the Euclidean distance 
between two adjacent points, a point is interpolated for every 0.1m in 
the space, and there is a total of six directions as shown in matrix M 
of Eq. (6). Equation 6 represents the positive direction of the X axis, 
the positive direction of the Y axis, the positive direction of the Z axis, 
the negative direction of the X axis, the negative direction of the Y 
axis, and the negative direction of the Z axis in the three-dimensional 
coordinate.

	 (6)

The radius of the interpolation point is assigned according to the 
number of interpolation points and the distance between the two 
points as shown in Eq. (7).

	 (7)

In Eq.(7), n is the number of interpolation points, rc indicates the 
radius of the current point, rp indicates the radius of the previous 
point, and i indicates that the current point is the ith interpolation 
point between two points.

Then, we use the Laplacian smoothing method to smooth the 
skeleton, as shown in Eq. (8), which makes the lines between skeleton 
points smoother and consistent with the bending condition of real tree 
branches.

	 (8)

where Pointi-1 and Pointi+1 are two points before and after Pointi, α is 
the coefficient of the Laplacian smoothing method.

D.	Branch Modeling
A cylinder can be regarded as a combination of a circular cross-

section and a central axis perpendicular to the cross-section. The 
natural branches of trees are usually cylindrical bodies of different 
thicknesses. However, the cylindrical shape makes the tree trunk 
incoherent in modeling. Therefore, we propose a new model using 
geometrical shapes. Based on the complete skeleton generated, 
we take each skeleton point as the center of a circle. We define the 
direction vector from a point in the skeleton to its parent as the local 
z-axis as shown in Fig. 5(a). A series of discrete points on the cross-
section circle are constructed according to the radius parameters. As 
calculated in Eq. (9),

	 (9)

where R is the radius of the skeleton point and θ is the angle 
between the polar axis and the X axis in polar coordinates. The 
discrete points are transformed by rotation in the skeleton direction to 
obtain absolute coordinates.

Fitting the tree by using geometrical shapes can address the problem 
of gaps between branches. The effect is shown in Fig.5 (b). Finally, we 
use the quadrilateral mesh surface to reconstruct the geometric model 
of the tree.

(a) (b)

Fig. 5. Local coordinate system. (a) shows the cross-sectional circle, (b) shows 
the geometrical shapes fitting.
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IV.	Experiments and Analysis

This section tests the proposed method. This experiment is carried 
out on the Windows 10 operating system, with a memory size of 64GB. 
We utilize a CPU powered by Intel(R) Xeon(R) W-2145 @3.70GHZ. 
All experiments as well as analysis are run on MATLAB R2019b. 
Experimental data are collected by GeoSLAM ZEB-HORIZON. This 
portable laser scanner is flexible and efficient, which scans points 
at 300,000 points per second at the field of view 360◦×270◦. The data 
collection is convenient and brings fewer point registration errors. 
Although our data are collected from the side-view, our system 
scanner distance can be over 100 meters, which provides abundant 
information for our modeling. The scanner is simple to use and 
provides easy access to collect the points of street trees. The input 
scene is located at Nanjing Forestry University, Nanjing, China. In this 
part, we qualitatively and quantitatively assess the proposed strategy. 

A.	Visualization
This part focuses on evaluating our method using an artificial visual 

approach. We display the results of Ginkgo, Prunus and Platanus. The 
first column shows the original point clouds of investigated individual 
trees, the second column shows the skeleton of tree point clouds, and 
the third column shows our modeling results. As shown in Fig. 6, we 
display a better tree morphology evidenced by the completeness and 
correctness of reconstructions. Technique used in this research is 
capable of modeling a variety of tree species and is generalizable to 
trees with various geometries and typologies.

B.	Ablation Experiments
To verify the validity of our optimization and modeling, we have 

made the following two sets of ablation experiments. The first set of 

experiments compares the optimized reconstruction with the non-
optimized reconstruction as shown in the figure. We notice that the 
non-optimized branches are not modeled smoothly and the results 
do not conform to the growth pattern of trees in nature as shown 
in Fig. 7. The optimized modeling has a natural bend in branches, 
which shows the tree’s topology in detail. We find branches fitted 
into incoherent cylinders depending on the location of the points and 
the size of the radius.

In the second set of experiments, we used different primitives 
for modeling. Fig. 8 (a-f) shows the modeling by using cylindrical 
primitives. Fig. 8 (g-l) shows the modeling by using geometrical 
shapes. The results show that there is a gap between cylinders, which 
does not allow for accurate modeling. Modeling with cones as the 
primitive generates a high-quality individual tree model.

C.	Quantitative Analysis
We use Eq.(10) to calculate the accuracy of the output model, 

including the overlapping of the point clouds to the individual 3D 
branch model. In the evaluation, the accuracy is calculated by the ratio 
of correctly extracted points as shown in Eq.(10).

	 (10)

where m is the number of model points. 𝑝i indicates the points of 
the tree model, and 𝑝j indicates the input points. δ (pi, pj) is a binary 
function. If the Euclidean distance between 𝑝i and 𝑝j is less than 
accuracy, δ is 1, otherwise, it turns out to be 0. Table I shows that the 
average completeness of the experiment reached 97.49%.

 

ID a b c d e f

Point 
Clouds

Tree 
Skeletons

Modeling 
Results

Fig. 6. Results of individual tree modeling. (a) and (b) show the Ginkgo. (c) and (d) show the Prunus. (e) and (f) show the Platanus.
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(a) Ginkgo#1 w/o (b) Prunus#1 w/o (c) Platanus#1 w/o (d) Ginkgo#2 w/o (e) Prunus#2 w/o (f) Platanus#2 w/o

(g) Ginkgo#1 w/ (h) Prunus#1 w/ (i) Platanus#1 w/ (j) Ginkgo#2 w/ (k) Prunus#2 w/ (l) Platanus#2 w/

Fig. 7. Comparison of results before and after optimization. (a-f) show the reconstruction results without being optimized (without optimization, w/o). (g-l) show 
the reconstruction results with being optimized (with optimization. w/).

(a) Ginkgo#1 
built by cylinders

(b) Prunus#1 built by cylinders
(c) Platanus#1 built 

by cylinders
(d) Ginkgo#2 

built by cylinders
(e) Prunus#2 built by cylinders

(f) Platanus#2 built 
by cylinders

(g) Optimized 
Ginkgo#1

(h) Optimized Prunus#1 
(i) Optimized 
Platanus#1 

(j) Optimized 
Ginkgo#2 

(k) Optimized Prunus#2 
(l) Optimized 
Platanus#2 

Fig. 8. The modeling results with different geometric structures. (a-f) show the reconstruction by using cylinders. (g-l) show the reconstruction results by using 
the proposed geometrical shapes.
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TABLE I. Quantitative Results for Ginkgo, Prunus and Platanus Trees

ID Points Species Complexity Accuracy

a 945333 1 M 97.69%

b 632514 1 M 99.52%

c 1972532 2 D 97.64.%

d 2046869 2 D 99.67%

e 93768 3 M 92.53%

f 95923 3 M 97.92%

D.	Comparisons
This section shows the comparison of our method and other 

commonly used approaches to further show our advantages and 
disadvantages.

Firstly, we show the comparison of our method with the Circular 
Truncated Cones Tree [19] and TreeQSM [20]. As shown in Fig. 9, 
the Circular Truncated Cones Tree (CT Cones Tree) utilizes optimized 
circular frustum to create the three-dimensional structure of 
skeletons. It partitions the tree into small blocks after preprocessing 
and interpolates directly. TreeQSM employs cylinders of various sizes 
for each branch, which are mostly straight. Thus, the reconstructed 
3D model lacks realism. However, we find the best path for each point 
cloud, and use the Laplace algorithm for smoothing operation. Our 
approach ensures that the model is according to the tree growth, and 
is complete in the final model presentation.

Secondly, we show the quantitative comparison. We use Eq.(9) to 
calculate the accuracy of tree reconstructions by using CT Cones Tree, 
TreeQSM and our method. Table Ⅱ demonstrates that the accuracy 
of our results is more than 90%, and better than CT Cones Tree 

and TreeQSM. Therefore, more accurate geometric and topological 
structures can be obtained by using our modeling method.

In the case of the Platanus (e and f of Table Ⅱ), the stem located 
centrally is clearly visible based on the clustered centers, and the 
majority of extended branches are concentrated toward the tree’s 
apex. The slender branches possess a low point cloud density, which 
suggests that TreeQSM may not be fully applicable. Our method, 
however, determines the optimal path for each point, utilizes its 
position information in the tracking process, and results in more 
realistic modeling. Consequently, the accuracy of Platanus (e and f) is 
significantly enhanced.

In table I, the ‘ID’ indicates the sequence number of trees and 
corresponds to the result in Fig. 6. The ‘Points’ indicates the input 
data. The ‘Species’ includes Ginkgo (Ginkgo biloba L.), Prunus (Prunus 
yedoensis Matsum.), and Platanus (Platanus orientalis L.). ‘M’ means 
moderate modeling complexity and ‘D’ means difficult modeling 
complexity. Our ranking system for M and D is determined by the 
number of original point clouds. Point clouds exceeding 100,000 
belong to category D, whereas those between 10,000 and 100,000 
belong to category M.

TABLE II. Quantitative Results for Ginkgo, Prunus and Platanus  Trees

ID Points CT Cones Tree TreeQSM Ours Increase

a 945333 97.28% 92.39% 97.69% +0.41%

b 632514 92.31% 92.06% 99.52% +7.21%

c 1972532 95.04% 81.19% 97.64.% +2.6%

d 2046869 93.97% 90.77% 99.67% +5.7%

e 93768 64.02% 39.43% 92.53% +28.51%

f 95923 92.96% 53.64% 97.92% +4.96%

CT Cones 
Tree

TreeQSM

Ours

(a) Ginkgo#1 (b) Ginkgo#2 (c) Prunus#1 (d) Prunus#2 (e) Platanus#1 (f) Platanus#2 

Fig. 9. The modeling results by using different ways.
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E.	 Limitations and Future Works
Our technique produces a precise 3D tree model. However, there 

are still problems that require additional study. 

In the data collection, in order to reduce the impact of different types 
of foliage on the modeling, we treat the foliage as noise, because the 
shape of foliage is quite different and presents especially blur in the 
collection caused by wind. One simple way is to use a fixed template to 
directly paste foliage in dense points around trunks. However, it does 
not demonstrate the correct tree structures and it is difficult to evaluate.

In the modeling process of an individual tree, it is easy to model the 
main trunk, and it is difficult to model multilevel branches, because there 
are some small gaps at the connection between the branches. In addition, 
due to the limited modeling methods, some branches with a large degree 
of curvature are difficult to be completely restored occasionally. These 
challenges will need to be further addressed in future works. The 3D 
single tree model reconstructed in this paper be extended and applied 
to scenes of rapid reconstruction of large trees, providing reliable 
model support for digital cities and virtual forestry. Besides, future 
work will also focus on the extension of our work on different species 
of trees, especially on the fusion of drone point clouds and handheld 
point clouds to improve the top-view modeling for tall trees.

V.	 Conclusion

Considering trees as one of the most significant elements of 
the natural world, it is significant to study 3D trees precisely and 
effectively. We propose a method to obtain skeleton branches and then 
reconstruct 3D tree models. Points are sampled by clustering, and then 
the data obtained from the slices are used as our skeleton points. To 
ensure the local optimum in modeling, we track the whole skeleton 
for searching different branches and estimating the radius of skeleton 
points by the least squares fitting method. The skeleton points are 
interpolated in different directions, which guarantees the curvature 
of tree branches is accurate. The experimental results show that the 
average accuracy of individual tree data is up to 97.49% based on the 
proposed geometrical shapes method, which provides a promising 
approach for 3D tree modeling.
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