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Accurately and feasibly predicting the future trajectories of autonomous vehicles is a critically important task.
However, this task faces significant challenges due to the variability of driving intentions and the complexity
of social interactions. These challenges primarily arise from the need to understand one’s driving behaviors
and model the interaction information of the surrounding environment. A substantial amount of research has
been focused on integrating interaction information from the surrounding environment, mainly using raster
images or High-Definition maps (HD maps). However, the real-time update of environmental maps and the
high computational cost associated with processing interaction information using compatible technologies
such as vision have become limiting factors. Additionally, ineffective simulation and modeling of real driving
scenarios, coupled with inadequate understanding of contextual environmental information, result in lower
prediction accuracy. To overcome these challenges, we propose a multi-modal trajectory prediction model
based on sequence modeling namely [Atraj, incorporating multiple attention mechanisms, focuses on the three
critical elements in real traffic scenarios: the target agent’s historical trajectory, effective interactions with
neighboring vehicles, and lane supervision and retention strategies. To better model these elements, we design
modules for Temporal Interaction (TTI), Spatial Interaction (SI), and Lane Awareness (LA). Through extensive
experiments conducted on the publicly available nuScenes dataset, IAtraj exhibits outstanding performance,
successfully addressing the challenges of temporal dependencies in trajectory sequences and the representation
of scene changes. Finally, comprehensive ablation experiments validate the effectiveness of each significant
module, reinforcing the reliability and robustness of IAtraj in dealing with complex traffic scenarios.
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I. INTRODUCTION

IN multi-agent interactive prediction, accurate and feasible trajectory
prediction of self-driving vehicles is an important prerequisite
for safe and efficient vehicle operation. This requires a thorough
comprehension and integration of the agents' historical trajectory
sequences and the environmental information, encompassing traffic
participants and lane details. However, fully understanding and
modeling the historical trajectory information and the environmental
information is a great challenge. In the actual driving scenarios,
affected by various potential factors such as the driver's driving habits
and the actual environmental conditions, there are many possibilities
for the future driving trajectories of the target agent, so the future
trajectories of the target agent should be extensively multi-modal. As
shown in Fig. 1, according to the environment information, drivers'

psychology, behavioral habits, or other potential factors, the target
agent can choose to continue straight (vertical diversity) or steer
(horizontal diversity) at different speeds presenting rich multi-modal
future trajectory sequences. Earlier, due to the limited experimental
conditions and equipment, researchers often explored trajectory
prediction methods based on physical models. [1], [2], [3] all used
Kalman filter-based physical models to predict the state of the agent
(including the moving direction, traveling lane, speed, and acceleration,
among others). Chen et al. [4] explored vehicle trajectory prediction
using a deep Monte Carlo Tree Search (deep-MCTS) approach. Both
[5], [6] used machine learning-based methods for path planning
and prediction. However, traditional physical and machine learning
models have lower prediction accuracy, robustness, and high latency.

As historical driving trajectories directly influence future driving
behaviors, extracting features from chronological trajectory sequences
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Fig. 1. Multi-modal travel trajectory map of the target agent.

becomes crucial. This process involves time-series modeling of the
trajectory data. Generally, the more historical information that can be
provided and the better the model’s ability to extract and model the
trajectory information, the more accurate the trajectories we predict.
Regrettably, the dataset imposes limitations on the available feature
information for the model. Therefore, our focus lies in enhancing
the model’s capacity to comprehend historical information. Existing
works such as [7], [8], [9], [10] fully consider the sequential nature
of trajectory sequences and use Long Short-Term Memory (LSTM)
Networks to extract the long-term temporal dependence of trajectory
sequences. Additionally, [11], [12] utilize an attention mechanism
to learn which time-step feature information needs more attention
adaptively. Meanwhile, for generating future trajectory sequences
that also have temporal features with long-term dependence,
future prediction trajectories need to be generated with a complete
understanding of the interaction information to generate plausible
trajectory sequences that cover a wide range of future possibilities.
Numerous studies, such as [8] and [12], correspond to the encoder
using LSTM as a multi-modal trajectory decoder. PGP [13] and
LAformer [14] introduce random noise to simulate longitudinal
driving behaviors, such as acceleration and deceleration, and the
introduction of random noise covers the diversity of changes in a
variety of future driving trajectories. Nevertheless, this approach to
some extent, heightens the model’s uncertainty, thereby affecting the
accuracy and realism of predictions.

The future travel paths of the vehicles are influenced not only by
their historical trajectories but also by the surrounding environmental
information in the scenes, and the neighboring agents may directly
impact the current decisions of the target agent. Therefore, the model
needs to consider the contextual scene information of the target
agent and the environmental information comprehensively. In this
regard, previous researchers have conducted numerous studies on
extracting feature information, leading to a multitude of interaction-
aware models. Early literature employed trajectory sequences and
scene raster images as multi-modal inputs. Including raster images
and videos facilitate interaction between multiple agents and the
understanding of contextual information to a certain extent [15],
[16], [17]. Although these methods can be implemented using
visual techniques, they are often limited by the fact that they can’t
capture the dynamic information of the agents and scenes well, as
well as require significant computational overhead. Additionally, the
decoder struggles to decode spatio-temporal information accurately.
In recent years, a large number of researchers have applied graphs
to traffic prediction in traffic scenarios [18], [19], [20]. However, the
incorporation of graphs can also simulate social interactions in traffic
scenarios, and existing works use high-definition maps to vectorize
and encode traffic scenario contextual information. Vectornet [21]
vectorizes both historical trajectories and lane lines as folded segments
and models them as global interaction graphs. PGP [13] divides lanes

into nodes and models lane graphs. Similarly [22] and [23], Graph
Neural Networks (GNNs) are used to realize the interaction and
awareness of feature information among multiple agents. Meanwhile,
numerous research efforts have explored the trajectory prediction
based on the attention mechanisms [9], [12], [14], [24], [25], [26], [27].
They all use the improved attention mechanisms to calculate attention
weights for realizing the effective interactions between multiple
agents. Compared to the raster image methods, these approaches can
fully comprehend environmental and scene information to predict the
future trajectories of agents accurately.

Although studies have made significant progress in raster images,
high-definition maps, and sequence modeling, there are still the
following problems: (1) Lack of organic and unified modeling of the
environment and awareness: most of the existing research only deals
with and models one-sided factors, such as modeling interactions
around the vehicles, but lacks monitoring and understanding of
lane keeping aspects, (2) Insufficient understanding and modeling of
feature information, as the availability of the vehicle history data is
limited, the model can only increase the understanding and modeling
of the vehicle history feature information, (3) Raster images can be
compatible with advanced visual technologies but often face challenges
of high computational costs and difficulty in effectively extracting and
modeling subtle features, (4) More advanced models and predictive
capabilities, providing accurate and efficient forecasting, can assist
autonomous vehicles in making wiser and safer decisions.

To solve the abovementioned problems, we propose a multi-modal
trajectory prediction model based on contextual spatio-temporal
interaction and awareness: IAtraj. The model fully considers and
analyzes the complex spatio-temporal interactions between the target
agent and its neighboring agents, as well as its ability to perceive the
road environment. Moreover, it establishes an integrated model that
combines feature extraction and modeling, interaction awareness, and
multi-modal decoding. We have the following key contributions:

+ To study the problem of trajectory prediction based on historical
sequences and environmental information, and construct a
generalized prediction network framework that can be applied to
efficient trajectory prediction for multiple agents, such as vehicles,
pedestrians, and others.

« To propose an Interaction and Awareness Block (IAB) based on
the attention mechanisms, from which intrinsic interaction and
awareness features are extracted by fusing joint temporal, spatial,
and lane features. The module takes into full consideration the
three most crucial elements in actual driving scenarios (historical
trajectories, neighboring vehicles, and road information). It
establishes independent yet organically integrated processing
strategies, thereby providing the target agent with accurate
judgment and decision-making strategies.

«+ To achieve better performance on the nuScenes 28] dataset and verify
the effectiveness of the module through extensive ablation studies.

The remainder of this article is organized as follows. Section
II presents related work on sequence modeling and interaction
awareness, and Section III presents the complete implementation of
our proposed IAtraj model. Section IV conducts extensive comparisons
and ablation experiments on the public dataset nuScenes, and finally,
Section V gives concluding remarks and directions for future work.

II. RELATED WORK

A. Time Sequence Modeling

Sequence modeling is a key component of the trajectory prediction,
which determines whether the interaction and awareness block
can effectively utilize trajectory features. In recent years, with the
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advancement of deep learning, researchers have extensively explored
trajectory feature modeling. LSTMs are capable of modeling the long-
term dependence within time sequence data and simultaneously
addressing the issue of gradient explosion associated with Recurrent
Neural Networks (RNNs). [9] uses LSTMs in the encoder stage to
extract and model the target agent, neighboring agents, and lane
information respectively, and similarly, in the decoding stage where
the trajectory data is also time-sequential, [8] and [12] apply LSTMs to
generate multi-modal future trajectory sequences.

With the emergence of attention mechanisms [29], a large number
of attention mechanism variants have been produced, and the field
of trajectory prediction has also used them for feature extraction and
interaction. [12] uses a multi-head attention mechanism to adaptively
assign weights to the agent’s historical trajectory data, in which [30]
combines LSTM with attention mechanisms for multi-dimensional
extraction of the target agent’s historical trajectories. However,
attention mechanisms entail high computational complexity. [30] also
designs a single-agent coding module for a multi-dimensional attention
mechanism to improve the computational speed. For this purpose, we
refer to the above works and design our Temporal Interaction (TI)
module using LSTMs in combination with the AFT FULL module [31],
the module eliminates matrix multiplication operation compared to a
traditional attention mechanisms, which are used in a way that not
only has better results but also has a lower computational complexity.

B. Spatial Interaction and Awareness

In real traffic scenarios, the target agent is not an isolated moving
entity. It typically relies on real-time, efficient analysis, understanding,
and response to the surrounding environment to make timely
adjustments such as steering, acceleration, and deceleration. However,
to achieve accurate judgments, we need to extract rich interaction
information and feature representation from traffic scenes. Previous
works have mainly transformed traffic scenes (e.g., lanes, pedestrian
crossings, traffic signals, etc.) into bird’s-eye views and performed
feature extraction from the bird’s-eye views by visual methods. Usually,
the studies involve fusing the acquired feature information with the
target agent’s data processed through a temporal model, which is
then utilized as input for subsequent predictions. Many works have
leveraged visual technologies such as Convolutional Neural Networks
(CNNis) to characterize the rich features of traffic scenes effectively.
For example, H. Cui et al [15] constructs an MTP model using
MobileNet-v2 and ResNet models to represent traffic scene information
as raster images. T. Phan-Minh et al. [32] improves the MTP model by
approximating all possible motions through a set of trajectories and
focusing on the multi-modal trajectory outputs. [33], [34], [35] adopt
social pooling techniques to achieve effective interactions between
the target agent and neighboring agents. However, raster images are
susceptible to limitations of local awareness and tend to overlook
important features in the global context and dynamic scenes, reducing
the accuracy of trajectory prediction. The attention mechanisms also
eliminate the need for raster images and can focus on more important
information in the environment through adaptive weight allocation.
[8] and [9] both employ LSTM to handle information from multi-
agent, emphasizing the significance of neighboring agents and lanes
in predicting the trajectories of the target agent through the use of
attention mechanisms. [11] adopts a dual-attention mechanism to
model intentional behaviors and trajectory prediction separately,
which improves the accuracy of prediction. Therefore, to achieve
effective interactions between multiple agents, we designed the
spatial interactive attention module to perceive the interactions
among multiple agents and accurately predict trajectories by utilizing
effective spatial representation to the greatest extent.

III. METHODS

Fig. 2 shows the proposed IAtraj model, in this section, we first
introduce data preprocessing and problem formulation, followed by a
detailed overview of the [Atraj model.

A. Preprocessing and Problem Formulation

Target agent history trajectory (VT(;)): Using the state
information of the target agent in the past 2 seconds as input. VT(,fr)
represents the historical trajectory sequences of the target agent in the

past T + 1 time steps. That is, VAR {VT(P) AT A } each state

Tar T+1’ " "0
. . . P
information is denoted as Vt( ) = [t Yt Ve, ap, 8:], where x,, y, denote

the agent’s transverse and longitudinal coordinate in the coordinate
system in the t moment, and v, a, and 0 X denote the agent’s velocity,
acceleration, and yaw angle information at the moment t.

V) Generating predicted

Target agent future information (v,
trajectory coordinates for the target agent in the next 6 seconds. VT(aFT)
represents the sequences of predicted trajectory states of the target
agent at the future H time steps. That is, Ve = (7, V@, ...V}, and
each state information is denoted as Vh(f) =[x, ¥4], where X, Y, denote
the agent’s transverse and longitudinal coordinate in the coordinate

system at the h moment, respectively.

Lane information (L™): Based on the target agent’s centroid
position, search for the nearest N lane segments within the surrounding
threshold range. Subsequently, select the two preceding and following
lane segments to ensure connectivity. Finally, resample their
coordinates to have equal distances. Among them, the lane closest to
the future trajectory in all lanes is labeled as the reference lane. L™
represents the N lane information that the surrounding environment
influences the target agent. That is, L™ = {L®, L®, ..., L™},

Neighboring agent historical trajectory information ng\?:
Since the selected lanes are the closest to the target agent, it is only
necessary to choose the state information of the closest agents within
each of the selected paths. We consider the closest neighboring agents
in the lanes to have the most significant impact on the target agent;
therefore, there is no need to screen other neighboring agents. VSuAQ
represents the trajectory sequences of the neighboring agents for
the past T + 1 time steps. That is, ng\? = {V_(;L),V_(ﬂl, ...,VO(")}, and the
specific state information is similar to the above target agent.

B. Detailed Overview of the Model
1. Vehicle-Lane Feature Encoder (VLFE)

The first step in trajectory prediction is to encode the trajectory
sequence data and environment information, and the effective
extraction of features determines whether the interaction and
awareness block can fully understand and utilize the feature
information. As shown in Fig. 2, the feature encoding module
contains two key parts: the feature extraction and the information
aggregation. Specifically, for the feature extraction module, to capture
the feature information at different scales, a one-dimensional CNN
(1ID-CNN) is used to perform a sliding convolution operation on
vV e V2, v Vi, or VL € {LO, L®, .., L®}. In addition,
introducing the LSTM helps to improve the model’s understanding of
sequence information, which in turn improves the ability of temporal
modeling of contextual information. The feature extraction module can
be expressed as Eq. (1)-(3):

1t = LSTM(1D — CNN(LY)) &)
nk = LSTM(1D — CNN(Vi,)) @
Ny = LSTM(1D — CNN (Vrq,)) )

In the above section, L, V&,,, and V... denote the original sequence
information of the lanes, neighboring agents, and the target agent,
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Fig. 2. A multi-modal trajectory prediction model framework using contextual information spatio-temporal interaction and awareness. The proposed model
is divided into three main phases: Vehicle-Lane Feature Encoder (VLFE): processing and extracting features of the target agent (red), neighboring agents
(green), and lanes (black); Interaction and Awareness Block (IAB): simulating effective spatio-temporal interactions of multiple agents and approximating
lanes in case of lane deviation of the target agent; Trajectory Predictor (TP): generating multi-modal predicted trajectory sequences.

respectively. ni, 1%, and n, are the feature information generated by
the lanes, neighboring agents, and the target agent after the feature
extraction module, respectively. In the information aggregation
module, we can combine the rich information n}¥, n¥", and n, in
the trajectory sequences, and then provide more expressive features
for the subsequent trajectory prediction tasks through the mapping
of feedforward layers. Eq. (4) describes the process of information
aggregation.

n' = BatchNorm(®,(Relu(®, (concat(nt,nt, 1)) 4

The @,, @, layers are two fully connected layers, whose main
function is to transform and map the features nonlinearly, and ' is the
output of the VLFE module, which contains the historical trajectories
of the target agent, neighboring agents, and lane information.

2. Interaction and Awareness Block (IAB)

For multi-modal trajectory prediction, it is crucial to establish the
spatio-temporal interactions between the target agent, neighboring
agents, and the surrounding environment, so we use the IAB module
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to achieve the spatio-temporal interactions of the target agent and
efficient awareness of the surrounding environment. Following the
1D-CNN with the LSTM, the temporal features of the target agent
are initially extracted. To emphasize the significant spatio-temporal
features, we predominantly employ the information passing through
the VLFE module, emphasizing the significant temporal and spatial
expressions of the target agent via the T and SI modules. For the lane
awareness module, the lane weights are adaptively assigned to select
an appropriate driving lane.

Temporal Interaction Module (TI): The TI module enables the
model to more selectively focus on and integrate information from
different time steps in the sequences, and the features 1, generated
by the target agent after the VLFE module are nonlinearly mapped
into Q,, K,,, and V. The mapping relationship changes as shown in

Eq. (5)-(7):

Qrr = p1(r, Wo,,) (5)
Krp = p2(r, Wier,) (6)
Ve = ps(nr, WV-”) (7)

Where, 1, denotes the feature information generated by the target
agent after the VLFE module. Wop» Wiy, and Wy, are the weight matrix.
Additionally, p,, p, and p, are the different linear transformation layers
to compute the significant time expressions:

Yexp(Kr + W) © VTI)
Yexp(Kr + W)

=0
Nr1 @) O( ®)

The temporal interaction attention values are calculated as described
in Eq. (8). We calculate the time-series weighted average using K, and
V,, then employ @, for implicit attention calculations. This process
allows us to acquire trajectory information based on these calculated
weights. Consequently, it can emphasize or balance the significance
of specific time steps, thereby obtaining more representative temporal
features n,- Here, W is the weight matrix, and © is the element-
wise product, which makes the computational complexity of the
AFT FULL much lower than that of other attentional mechanisms,
as the element-wise operation replaces the matrix multiplication of
traditional attentional mechanisms.

Spatial Interaction Module (SI): The SI module interacts with
each element of the target agent’s trajectory sequences (for example,
features at each time step) with elements from other sequences
through matrix multiplication. It generates weights based on their
similarity to simulate the impact of neighboring agents on the ego
vehicle’s movement in real driving scenarios. The computation of
the Query, Key, and Value in the multi-head attention mechanism is
described in Eq. (9)-(11):

Qsi = ps(n7, Wog,) )
Kg = ps(n, WKSI) (10)
Vsr = pe(m, WVS,) (11)

In this case, the Query (Q,), Key (K,,), and Value (V) are obtained by
nonlinear mapping of the target agent features n, with the aggregated
features 1. The nonlinear mapping is shown in Equations (9)-(11). Each
head € 1, 2, .., N, of Q» K and v, for attention computation can be
defined as Eq. (12):

Qs; ® transpose(Ks;)

head; = softmax(

) ® Vs

Vi (12)
ns; = Concat(heady, head,, ..., heady, )W + b (13)

By utilizing the similarity relationship between the information of

the target agent and that of neighboring agents, a weighted aggregation
was conducted on the neighboring agents’ information. Enable the final
feature representation head, to more effectively capture interactions
between the target agent and its neighboring agents. Where, Eq. (13)
represents the value of attention for aggregating multiple heads, N,
represents the number of heads of multi-head attention, W represents
the weight matrix, b represents the bias, @ denotes the matrix
multiplication, and 5, represents the feature values generated by the
spatial interaction module.

Lane Awareness Module (LA): Calculate the attention weights
designed to decrease the extent of lane deviation for the target agent
using lane-aware probabilities associated with neighboring lane
features. The lane-aware feature results are obtained by summing the
calculated probabilities. The specific formula expressions are shown
n (14) - (15):

w; = softmax(P,(Relu(93(n%)))) (14)
N
Na = w; Tﬁ
! Z (15)

Where w, is derived from the feature aggregation module, mapping
through softmax indicates the degree of attention to neighboring lanes
in the form of probabilities. The weighted probability w, is multiplied
by the feature values 7, to obtain lane features with weights n . n,,
represents the feature value generated by the lane awareness module;
@, and @, denote fully connected layers.

We employ a gated selection mechanism to compute and filter
temporal, spatial, and lane-aware features concurrently, specifically
through Sigmoid gated filtering to extract the effective feature
information, multiply it with the original information, and then carry
out the residual connection to input it into the layer normalization
layers, as illustrated in Eq. (16)-(18):

TI = LayerNorm(ny; + 0 * Sigmoid(nry)) (16)
SI = LayerNorm(ng; + ng; * Sigmoid(ns;)) (17)
LA = LayerNorm(npa + 14 * Sigmoid(n,,4)) (18)

LayerNorm denotes the layer normalization, and TI, SI, and LA
represent the outputs of the final temporal, spatial interaction, and lane
awareness modules, respectively. The residual concatenation of feature
values from the temporal, spatial interaction, and awareness modules,
together with the temporal features of the original target agent, yields
n,, as the output of the IAB module. Residual connectivity allows
information to propagate more directly between different layers of the
network and avoids model degradation caused by vanishing gradients
[36]. Eq. 19 describes the feature aggregation process for IAB.

Nau = concat(nr, LA, SI, TI) (19)

3. Trajectory Predictor (TP)

The TP mainly consists of K LSTMs with a fully connected layer.
Its main function is to aggregate the features of the target agent 7,
with the features from the interaction and awareness block TI, SI, and
LA, resulting in the combined features N which is then inputted into
the TP module. Using the feature information, the module generates
multiple sequences of future trajectories VT’;r.

VD = 0, (LSTM(au))

(20)

The TP module is described in Eq. (20). Among them, @, is
composed of a multilayer linear network (Linear), a normalization
layer (BatchNorm), and an activation function layer (Relu).
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C. Realization Details

1. LOSS

We introduce the classification loss L,  to constrain behaviors
such as lane change and mode choice, the regression loss L, . to
constrain the degree of deviation of the predicted trajectories from the
true trajectory, and the lane choice loss L, to encourage the model to
choose an appropriate lane. Therefore, the total loss L, function of

total
IAtraj is shown in Eq. (21):

Ltotal = Lclass + Lregression + Llc

(21)

The class loss consists of trajectory modal classification loss L , and
lane classification loss L, .. These two losses are implemented using
cross-entropy loss, and the regression loss L is implemented using
Smooth L1. The class loss and regression loss are shown in Eq. (22)

and (23), respectively.

— K L
Lclass - aLcls + bLlane_cls
K
—a) -
k=1

k I\k ¢
¢ SmoothL1(V, V%)
k=1

L
k l
7T({“tlsl()g({-}cls) +b z - ﬂllane_clslog(ﬁ-lane_cls) (22)
=

Tegressmn
(23)

Where, K denotes the number of modalities, and L denotes the
number of candidate lanes. ni,s/,l)ane cis denotes the target probability,
Ak/D
Tleisjlane_cis 1S the predicted probability. a, b and c are the weighting
factors, balancmg the overall impact of multiple factors on the model
[37]. V. and Vt denote the real and predicted trajectories of the target
agent, respectively.

—d HZé(Vt.Lfef) if 80,17 > s e,

0 , otherwise. (24)

Lane choice loss L is utilized to measure the deviation of the
predicted trajectories from the lane, as illustrated in Eq. (24). This
metric encourages the target agent to approach the reference lane to
enhance prediction accuracy when the predicted trajectory’s distance
from the reference lane exceeds that of the true trajectory, as measured
by & (X, Y), denoting the distance difference between X and Y. Here, LY
represents the reference lane.

2. Training

The training process for the IAtraj model is performed using the
NAdam optimizer and end-to-end training for 33 epochs on NVIDIA
RTX 3090 GPUs, taking approximately 4 hours. We use the PyTorch
framework to implement the proposed model. To provide a better

understanding and implementation, we provide a pseudo-code form
algorithm for the entire model, refer to Algorithm 1 for details.

IV. EXPERIMENT

A. Dataset

nuScenes: We evaluated the IAtraj model on the large-scale
public trajectory prediction dataset nuScenes, which is an automated
driving dataset created by nuTonomy, Inc. The dataset comprises
1,000 different scenarios occurring at various times of the day and
under different weather conditions, encompassing settings like city
streets, highways, parking lots, and more. Each sample in the dataset
includes multiple sensor data points and annotated information
about associated vehicles, pedestrians, bicycles, and other objects.
The maximum length of the dataset is based on the agent’s historical
trajectory data from the past 2 seconds to predict the target agent’s
motion trajectories for the next 6 seconds.

Algorithm 1. Trajectory Prediction through Contextual
Information Spatio-Temporal Interaction and Awareness
Input: Historical trajectory sequences and lane information,
X IE{ Tar Sur’ }
Output: Future trajectory sequences

1. procedure VLFE(X,i€{V, ,V, ,L}

2:  for each ido

3 eip = Calculate the 1D-CNN embeddings.

4 n' = Calculate the LSTM outputs.

5: Nbgg = Calculate the aggregation information.

6: end for

7. return Mg, i € (Vrar, Vsur, L3

8: end procedure

9: procedure IAB (7', 0k, i € (Vrar, Vsur, L})

10: 5= Calculate the feature aggregation output.

11:  TI = Calculate the Time Interaction Module output.

12:  SI= Calculate the Spatial Interaction Module output.

13: LA = Calculate the Lane Awareness output.

14: Concatenate Ny T1, SI, LA to generate Nar

15: returnn,

16: end procedure

17: procedure TP(n, )

18: Vf,, = Calculate decode outputs and generate initial future
trajectories

19: return Vi,

20: end procedure

21: if then train == True:

22: for each epoch do

23: Mg« VLFE (X, i€ {V,,V,, L}

24: N < 1AB () Uagg, i€{V,,, Vg, L}

25 Vi e TP(n,,)

26:  Calculate Loss and update backward.

27:  end for

28: end if

29: for test dataset do

30:  Magg < VLFE (X, i€ {V, , V,, L}

31: N < 1AB () Uagg, i€{V,,, Vg, L}

32: VE. « TP(n,,)

33: return All future trajectories V..

34: end for

B. Performance Evaluation

In this section, we will introduce two common evaluation metrics
for trajectory prediction, Average Displacement Error (ADE) and
Final Displacement Error (FDE), and use these two evaluation
metrics to assess the performance of the proposed model.

Average Displacement Error (ADE): The ADE is computed by
calculating the average Euclidean distance difference between the true
trajectory and the corresponding moment in the predicted trajectories
for each moment, reflecting the overall level of prediction effectiveness.
In the equation, K denotes the predicted modal number, H denotes the
future time step, Yar, and V,, denote the predicted trajectory positions
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TABLE 1. ComPARISON RESULTS WITH EXISTING STATE-OF-THE-ART METHODS IN THE NUSCENES TEST SET

Net ADE, FDE,
work K=1 K=5 K=10 K=1 K=5 K=10
AME - 1.99 1.53 - 4.23 3.08
CoverNet 3.87 1.96 1.48 10.16 - -
GATraj - 1.87 1.46 - 4.08 2.97
AgentFormer - 1.86 1.45 - 3.89 2.86
SGNet - 1.85 1.32 - 3.87 2.50
ContextVAE 3.54 1.59 - 8.24 3.28 -
Lapred 3.51 1.53 1.12 8.12 3.37 2.39
IAtraj(Ours) 3.27 1.48 1.21 7.59 2.90 2.11
ADES5 and FDES5 vs. No of Epochs Training Loss and Validation Loss vs. No of Epochs
o7 —— train_ADE5 6 —— train_Loss
train_FDE5 val_Loss
81 —— val_ADE5
—— val_FDE5

ADES5 and FDE5 During Training and Validation

— T T T
113 15 17 19 21 23 25 27 29 31 33
Epoch

Fig. 3. Change curve of evaluation metrics for training and validation process.

and true trajectory position of the target agent at time ¢, respectively.
The ADE is calculated as shown in Eq. (25).

1 K H
ADEK:K*HZZ”
k=1t=1

Final Displacement Error (FDE): The FDE is computed by
calculating the Euclidean distance difference between the predicted
trajectories and the position of the endpoint of the corresponding true
trajectory. Where, K denotes the predicted modal number, VTfaT(F) and
Vrarr, d€note the final predicted trajectory positions corresponding to
the target agent and the final true trajectory position, respectively.
The FDE is calculated as shown in Eq. (26).

1 K
FDE =2 |
k=1

C. Comparison

o)

Tar — VTarl |Z

(25)

1A%

Tar(F) VTar(F) | |2

(26)

To fully assess the overall performance of our model, we compared
the IAtraj model with mainstream models and methods in recent years.
AME [38]: Relies on bird’s eye view (BEV) local perception
maps to supplant the need for high-definition maps, avoiding
dependency on HD maps and enabling accurate predictions of
practical significance.

CoverNet [32]: Constructs the trajectory prediction problem as
a prediction method for classifying different sets of trajectories
using trajectory state sequences and raster images as inputs.

GATraj [10]: Applies Graph Convolutional Networks (GCNs) to
simulate interactions between multiple agents, and incorporates
the attention mechanism to model the spatio-temporal dynamics
of the agents. The method demonstrates excellent prediction speed

Training Loss and Validation Loss

—
9 11 13 15 17 19 21 23 25 27 29 31 33
Epoch

7
Fig. 4. Loss variation curve for training and validation process.

and efficiency while maintaining prediction accuracy, presenting a
graphical model based on the attention mechanism.

« AgentFormer [26]: Joints modeling of temporal and social
dimensions mainly using the attention mechanism, through which
effective interactions between traffic participants can be achieved,
allowing the social behaviors of traffic participants to influence
the model of other participants.

SGNet [39]: The method considers that the agent’s movement will
change with time, so the designed model mainly performs step-
by-step goal estimation and application on multiple time scales for
use in predicting successive goals in the future.

ContextVAE [40]: An environment-aware vehicle trajectory
prediction model in real-time is developed utilizing a temporal
VAE architecture and map encoding module, generating high-
fidelity and effective trajectories corresponding to the given map.

Lapred [9]: By selecting the target agent along with the potential
lanes around it and applying attention computation, the model
enhances the effective interactions between the target agent and
the lanes, thereby improving the accuracy of prediction.

We evaluated the IAtraj model on the nuScenes dataset and
compared it with existing research, whose results are presented in
Table I. It can be observed that our proposed method outperforms the
other prediction methods in most of the metrics for modal numbers K
of 1, 5, and 10. Although Lapred [9] slightly outperforms our method
in the ADE,; metric, it achieves significant improvement in all other
metrics, especially the FDE indicators. We attribute the excellent
performance in terms of evaluation metrics to the exquisite and
complete design of IAtraj. It differs from models with raster images
attempting to extract contextual environment information using image
techniques and also differs from models focusing on processing local
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TABLE II. ABLATION EXPERIMENTS ON THE NUSCENES TEST SET

Modules Metrics
Ablations Time Spatial Awareness G ADE, FDE,
ate
LSTM TI SI LA K=1 K=5 K=1 K=5
Baseline v 4.29 2.08 10.36 457
Method A v v v 411 1.99 10.06 439
Method B v v v v 3.39 1.53 7.89 3.06
Method C v v v v 3.38 1.51 7.88 2.98
Method D v v v 3.33 1.47 7.86 2.93
Method E v v v v 3.37 1.50 7.78 2.95
Method F v v v v v 3.27 1.48 7.59 2.90
Baseline Baseline+TI Baseline+Sl |Atraj
N N~ ™ NN
(a1) (a2) (a3) (ad)

LN N

(b1) (b2)

(b3) (b4)

p #

=

(cT) (c2)

(c3) (c4)

Predicted Endpoint Lane

—— Predicted Trajectory

Past Trajectory —— Ground Truth

Fig. 5. Qualitative analysis of the module ablation study on the nuScenes dataset. Horizontal represents being in the same scenes (respectively straight, left turn,
right turn), while vertical means being in the same ablation research models. The past trajectories are shown in red, the ground-truth trajectories are shown in
blue, and the predicted trajectories are shown in green. The same applies to the following image.

information. IAtraj focuses on three key elements in traffic scenarios:
its historical trajectory, neighboring vehicle behaviors, and lane-
keeping. By cleverly modeling these factors, it can effectively simulate
variations in real driving scenarios, establish temporal dependencies,
and generate plausible prediction results.

D. Ablation Studies

1. Quantitative Analysis

In order to comprehensively study and evaluate the model’s overall
performance, focusing particularly on the effectiveness of the Time
Interaction (TI), Spatial Interaction (SI), and Lane Awareness (LA)
modules, we take a step-by-step approach to add modules to verify

the predicted performance of the model. The baseline model uses a
fully connected layer to replace the entire interaction and awareness
block. Based on this, Method A introduces the Temporal Interaction
(TT) module in the baseline model to consider only the role of temporal
information on the target agent; Methods B and C consider the ability
of the LSTM component and the TI component to extract temporal
information, respectively; Method D retains the Spatial Interaction
(SI) module to assess the degree of influence of the surrounding
environment on the target agent; Method E lacks the gating selection
mechanism, which reduces the screening and filtering ability of feature
information; and Method F includes the complete interaction and
awareness block with the best prediction performance. The specific
performance evaluation is presented in Table IL
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Lapred (K=1) IAtraj (K= 1)

Lapred (K = 5) IAtraj (K = 5)
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Fig. 6. Qualitative analysis of IAtraj and Lapred on the nuScenes dataset, with the left and right columns representing scenarios with modal numbers K=1 and
K=5, respectively. Horizontal means being in the same scenes (respectively straight, left turn, right turn, multimodal variation), while vertical represents being

in the same models.

From the data in Table II, it is evident that the baseline model’s
performance is notably inferior to that of the other models due to its
lack of adequate interaction awareness. However, all the improved
methods have shown significant enhancements when compared with
the baseline method. This suggests the effectiveness of our proposed
interaction and awareness block in the trajectory prediction tasks.
Notably, Method D, which simply incorporates the Spatial Interaction
(SI) module, demonstrates the most substantial performance
improvement over the baseline model. This highlights the paramount
importance of comprehensively considering and understanding
spatio-temporal interaction behaviors around the target agent’s
driving path in trajectory prediction tasks, aligning with real-world
driving situations.

To have a more comprehensive understanding of changes in
the IAtraj model training process, we experimented with various

configurations. By evaluating the curves of metric changes and loss
changes, we observed that the training loss and validation loss almost
converged around the 33rd epoch. Therefore, we decided to halt the
training at epoch=33. The curves depicting changes in evaluation
metrics and loss during the training and validation processes related
to the model are displayed in Fig.3, 4.

E. Qualitative Analysis

Fig. 5 visualizes the scenarios of baseline, temporal interaction,
spatial interaction, and IAtraj model, respectively. It mainly explores
the influence of different modules with varying critical information
on the prediction accuracy of specific scenarios. Horizontally
observing different ablation research models, a comprehensive
understanding of feature information, including time, space, and
lanes, proves advantageous in enhancing the accuracy of predictions.
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The detailed comparative analysis is shown in Fig. 5. Trajectories
predicted by the baseline model are approximate extensions of
historical trajectories, suggesting that the target agent relies solely on
historical trajectories to continue moving along potentially possible
directions. The introduction of the Temporal Interaction (TI) module
brings the predicted trajectories closer to the actual trajectory,
thereby improving the understanding of historical sequences beyond
being mere extensions of historical trajectories. Upon adding the
Spatial Interaction (SI) module, the predicted trajectories generally
align with actual driving trajectories. However, the judgment of
possible neighboring driving lanes and predicted endpoints remains
insufficient, particularly in Fig. 5 (b3) where the predicted endpoint
location judgment is poor. Interestingly, the comparison between
Fig. 5 (c3) and Fig. 5 (c4) illustrates that thorough consideration and
comprehension of lane information can generate potential left turn
trajectory sequences, thus expanding the richness of modalities.

Fig. 6 compares predictions between IAtraj and Lapred [9] in
specific scenarios on the nuScenes large-scale dataset. The left and
right columns showcase the prediction scenarios for modalities
K =1and K = 5. The overall comparison indicates that our proposed
IAtraj model outperforms the Lapred model in predicting trajectories
and endpoint positions. Further detailed comparisons reveal that in
Scenario (2), the IAtraj model effectively predicts potential variations
in agent speed, demonstrating its advantage in longitudinal richness.
However, in Scenario (6), regrettably, the IAtraj model’s richness is
inferior to that of the Lapred model, as it fails to predict potential
driving possibilities other than right turns. Interestingly, in Scenario
(7), despite the accurate prediction generated in the case of modality
K = 1, the model still comprehensively understands lane information,
proposing potential modes for left turns, with most modes aligning
with the real trajectory. This scenario reflects the diverse and rich
prediction possibilities in real driving situations influenced by various
potential factors.

Based on the qualitative analysis mentioned earlier, our IAtraj model
has demonstrated significant improvements over baseline models in
terms of accuracy, multimodality, and lane supervision and retention.
Particularly noteworthy is its outstanding performance in longitudinal
diversity, where our model can accurately predict the target agent's
movement at different speeds without deviating from the lane. This
result strongly validates the effectiveness of the proposed TI, SI, and
LA modules.

V. CoNCLUSIONS AND FUTURE WORK

In this work, we introduce a vehicle trajectory prediction model
namely IAtraj, based on contextual spatio-temporal interaction and
awareness. The model takes into account the historical trajectories of
the target agent and surrounding contextual information as inputs.
It employs a Temporal Interaction (TI) module to comprehend the
temporal dependence within historical trajectories. Simultaneously,
the Spatial Interaction (SI) module adapts to the influence of
neighboring agents on potential driving trajectories, while the Lane
Awareness (LA) module extracts available lane information from
the surrounding environment. This facilitates the generation of
diverse multi-modal trajectory predictions. Additionally, the feature
information undergoes filtration and screening via a gated selection
mechanism. Finally, a trajectory predictor generates multi-modal
trajectory sequences.

Large-scale experiments on the nuScenes dataset have validated the
outstanding performance of the IAtraj model in trajectory prediction
tasks, achieving superior results compared to existing studies.
Moreover, extensive ablation studies have confirmed the effective
representation of both the spatio-temporal interaction and awareness

block, providing rich dynamic information and enhancing the
understanding of spatio-temporal interactions among multiple agents.

Despite achieving excellent predictive performance in this work,
there are still some directions worth exploring. For instance, especially
when integrated into terminal vehicles and real-time systems, we
need to consider the model’s computational and memory limitations.
Therefore, we are committed to developing lighter network
architectures. Next, in addition to considering history trajectory and
environmental factors, we should also pay more attention to predictive
performance in variable scenarios, such as school zones, intersections,
freeways, etc., which exhibit extensive randomness and immediate
driving behaviors. Future predictive models should prioritize the
modeling and application of these special scenarios.
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