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I.	 Introduction

THE effective and realistic interaction is a prerequisite to attain/explore 
physical/behavioral properties of a Virtual Environment (VE) and its 

constituent objects. The interaction in VEs ranges from keyboard and 
mouse where button clicks (key/mouse) carry no information [1], to touch 
based, which uses 2D gestures with finger/hand actions via touchscreens/
interactive panels, and recently to touchless (natural) interfaces which 
involves 3D gestures in midair [1]. Hand gesture recognition plays a 
vital role in various applications such as sign language recognition [2-5], 
virtual and augmented reality [6-10], robotics [11-13], physical (health) 
sciences [14-16], natural sciences [17], computer engineering [18, 19], 
and industrial areas [20, 21] etc.

Gesture based interaction is the most attractive form of natural 
interaction due to the exclusion of physical contact with hardware 
where input/interaction devices need to be permanently connected 
(via some physical means) with computer. These physical media 
(cables) are used for delivery of input to the computer. These media 
lead to extra burden, need space, extra cost and complexity. Gesture 
based interaction offers more natural and intuitive HCI with various 
multimodal forms [22-26].

Different sensors have been used in computer vision and image 
processing for recognition purposes, such as Koller et al. [27], who 
used monocular camera for tracking in augmented reality applications. 
Jalal et al., presented different systems for Human Activity Recognition 
(HAR) based on depth video [28, 29] and depth imaging [30, 31]. Some 
authors proposed, Depth Images-based Human Detection and Activity 

Recognition [32], and Human Pose Estimation and Recognition from 
RGB-D Video [33].

Feature selection has a vital role in any recognition system. For face 
recognition different methods have been used. In Holistic Matching 
method [34, 35], the complete face area is taken as input to the 
recognition system. In Feature based method, the position and statics 
of nose, eyes and mouth are considered as input to the system. The 
Hybrid method uses the combination of both Holistic and feature based 
methods [36].

For action recognition, Lowe [37] introduced Scale Invariant Feature 
Transform (SIFT). Dense Sampling Scale Invariant Feature Transform 
(DSIFT) was used by different authors for action recognition [38-48]. 
Histogram of oriented gradient (HOG) was used by [41, 47-55]. Shape 
context (SC) was proposed by Belongie and Malik [56] for feature 
extraction and also was used by Wang et al. [57], Gupta et al. [51], and 
Yao and Fei-Fei [58]. For recognition of action from still images, GIST 
was proposed by Oliva and Torralba [59] and used by Gupta et al. [51], 
Prest et al. [60], and Li and Ma [48]. The Speeded Up Robust Features 
(SURF), is proposed by Bay et al. [61] and used by Ikizler et al. [62] to 
represent the  human silhouettes for action recognition.

Different techniques are proposed by various authors for gait 
recognition. Ahmed et al. [63], used horizontal and vertical distances of 
selected joint pairs. Andersson et al. [64], calculated mean and standard 
deviation in the signals of lower joint angles. Ball et al. [65] used mean, 
standard deviation and maximum of the signals of lower joint angles. 
Dikovski et al. [66] proposed a set of seven different features, such as 
joint angles and inter-joint distances aggregated within a gait cycle, 
body parameters, along with various statistics. Kwolek et al. [67], used 
static body parameter, bone rotations, and the person’s height. Preis 
et al. [68], presented 13 pose attributes. Sinha et al. [8], used multiple 
gait features, upper and lower body area, inter-joint distances and other 
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features [65, 68]. Skin Joints Features were also proposed by [69, 70] 
for gait recognition.

Different approaches are proposed for hand recognition such 
as mount based sensors [71], multi-touch screen sensors[72, 73] 
and vision based sensors [74-76]. The depth based hand gesture 
recognition have three types i.e. static hand gesture recognition [77], 
hand trajectory gesture recognition [78, 79] and continuous hand 
gesture recognition [80, 81]. Most of the authors used computer 
vision and image processing methods [82-85], along with some newly 
introduced input devices such as Leap Motion [86-88] and Kinect [89]. 
For a natural interaction with AR environments, fiducial markers are 
used with fingers [90, 91]. Different computer vision techniques are 
used for detection of hand and fingertips for AR interaction [92-94]. 
These systems are commercially limited due to problems such as skin 
color and precise depth sense [94]. Different glove based techniques 
have been used for accurate interaction [95-97] but limited due to its 
cumbersome nature. 

For gesture based navigation, different systems have been proposed 
so far, but have limited commercial application due to cumbersome 
or inaccurate nature, cost, or dependency/need for special devices and 
their limited range. Recent research mostly stresses to deal with these 
problems, but simple and intuitive interaction is still the major area 
than needs to be improved. The previous gesture based navigation 
techniques, mostly rely on the coarse/unrealistic alteration/shape of 
hands and fingers layout for transition among different gestures which 
results in an increased physical and mental load on the user. 

In this paper, we propose a novel two hand gesture based 3D 
navigation technique for VEs with the objective of providing intuitive 
and easy navigation. Navigation includes 3D movement, i.e. forward, 
backward, up, down, left, and right along with an effective speed 
control mechanism. Computer vision techniques are used for detection 
of gestures (colored thumb, fingers) from the real scene while OpenGl 
is used as a front end for navigation in the VE. Machine learning tools 
such as SVM and kNN are used to assess the accuracy and performance 
of the proposed gestures.

The rest of the paper is organized as follows: section 2 presents 
related work, section 3 describes the proposed system, section 4 
consists of experiments and evaluation and finally section 5 is related 
to conclusion and future work.

II.	 Related Work

In daily life communication, hand gestures cover the gap of 
merely verbal information, and so is a necessary part of effective and 
meaningful communication with the receiver. In HCI, hand gesture 
based interaction is more valuable due its natural and attractive 
nature. Hand gestures refer to meaningful movement of the hand and 
fingers[86], which entails most valuable information[98].

In the past different navigation techniques in VEs have been 
proposed [99, 100]. Different types of sensing techniques have been 
used for recognition of patterns in gestures [101]. Different sensing 
systems have been proposed so far, such as glove based, vision based, 
along with some newly introduced devices such Leap Motion [102] 
and Kinect [89]. 

Glove based devices use movement based approach with high 
performance in some applications such as recognition of sign language 
[103]. CyberGlove, a type of data gloves is used for tracking hand 
gestures [104]. Cooper et al. [105] used color coded glove for tracking 
of hand movement, but the system needs wearable gloves which 
decrease user’s experience in the environment. Kim et al. [106], used 
a Cyber Glove, a wearable device for recognition of hand gestures and 
performed different navigation tasks as shown in Fig. 1. 

Fig. 1. Gestures with Cyber Glove.

Although wearable devices were used mostly for gesture based 
interaction in the past, the cumbersome and costly nature of gloves, 
limit its widespread use in HCI [101].

Chen et al. [107], used computer vision for the detection of hand 
gestures from the video taken by a webcam. Two types of hand gestures 
were proposed i.e. appearance based which used bare hand and marker 
based (with colored markers on a black glove) 3D hand model. For moving 
a virtual car, different gestures were proposed as shown in Fig. 2. The 
system is unable to provide complete 3D movement and speed control. 
The system has less degree of correspondence with real world navigation. 

a. Two fingers 	 b. Palmc 	 c. Little finger

Fig. 2. Gestures for virtual car navigation [107].

Krum et al. [108], presented a navigation interface (earth 3D 
visualization) using verbal and hand gestures. The system used image 
processing techniques for detection of hand gestures taken from a 
Gesture Pendant video camera. Multiple infrared emitting LEDs were 
used for illuminating the hand gestures in front of camera. Different 
types of hand gestures were used for navigation. 

Shao Lin [109], used Leap Motion controller for detection of hand 
gestures. The proposed technique used both hands for three different types 
of gestures as shown in Fig. 3. Similarly clockwise and anti-clockwise 
rotation of hands produced the same rotation in the VE but the technique 
has no mechanism for up, down movements and speed control.

Kerefeyn et al. [110], used different gestures for controlling and 
manipulation of virtual objects in a VE using Leap Motion controller. 
The system proposed five different gestures for interaction with virtual 
objects using right hand (see Fig. 4). The system does not provide 
complete 3D navigation i.e. forward, backward, up, down, left, and 
right as well as there is no mechanism for speed control.

Khundam et al. [111], proposed single hand gestures via Leap Motion 
controller for navigation in VE as shown in Fig. 5. Forward movement 
is done by raising the hand with straight palm. While backward 
movement is achieved via turning palm direction or reversing hand 
facing. Pushing the palm to left causes step movement to left side while 
its movement to right results in step right. Grasping or moving out of 
display area causes hold position. Forward speed depends on advance 
movement of palm while pulling of palm to body controls backward 
speed. More or less movement towards left or right side causes more or 
less speed. The proposed gestures are hard to learn.
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Fig. 3. Gesture based navigation by Shao Lin [108].

Fig. 4. Gesture based interaction by Kerefeyn et al. [110].

Fig. 5. Hand gestures proposed by Khundam et al. [111].

Batista et al. [112], used Leap Motion controller and proposed 
different hand gestures as shown in Fig. 6, for controlling an avatar in 
a virtual tour but there is no mechanism for up/down movement and 
turning left/right.

Fig. 6. Gestures proposed by Batista et al. [112].

Liang et al. [113] presented a system using Leap Motion controller 
for the detection of hand gestures. There were different types of 
modules for navigation such as single hand gestures, designed for 
children which causes avatar in VE to fly left, right, up, and down as 
shown in Fig. 7.

Hand gesture Movement Target action

Move right Fly to the right

Move left Fly to the left

Move down Fly down

Move up Fly up

Stretch Hover

Stretch to grip Grasp stick

Grip to stretch Drop stick

Fig. 7. Hand gestures proposed by Liang et al. [113].

Leap Motion controller is unable to detect all fingers of hand, 
specially middle and pinky finger, moreover, it has a limited working 
space [109]. Other problems include misdetection during overlapping of 
hands [114], crossing of field boundaries, and varying lighting conditions 
[112]. Leap Motion gives inaccurate results for hands beyond 250mm 
upside the controller as well as it gives unstable sampling frequency 
[115]. A comparative study conducted by [114] states that Kinect 
provides inaccurate but comprehensive data while Leap Motion gives 
comparatively accurate results. Nabiyouni et al. [114] stated that Leap 
Motion fails to recognize cross over fingers or if they are next to each 
other. Rotation of palm or fingers more than 80 degrees causes failure in 
tracking. Moreover it produces significant fatigue.

Kinect is used for detection of full human body gestures to interact 
with virtual objects [117]. Kumerburg et al. [116] used Microsoft 
Kinect as input device for navigation in a VE. Different gestures for 
navigation were proposed such as raising both arms upside for fly 
and forward movement as shown in Fig. 8. The proposed navigation 
gestures were hard to learn and use. 
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Gesture Command Characteristic

Tilt up Bend backward with hands down

Turn left Raise the left hand above shoulder 
sideways with the right hand down

Pan left Move left hand across the body and 
right hand down

Fly, move foward Raise both arms up

Fly pan right Raise both arms and move right hand 
across head

Fig. 8. Gestures proposed by Kumerburg et al. [116] using Microsoft Kinect.

Vulture et al. [118], also used Microsoft Kinect and proposed 
gesture for navigation using both arms as shown in Fig. 9.

Gesture Characteristic

Foward navigation

Backward navigation

Navigation to the right

Navigation to the left

Up to a higher level

Down to a lower level

Fig. 9. Gestures proposed by Vulture et al. [118].

The previous techniques for gesture based navigation mostly depend 
on variant shapes/layouts of hands, fingers, and arms which lead to 
extra mental and physical load on user in learning and usage. They are 
limited in use due to less realistic nature.

III.	Proposed System

We propose a new, two hand gesture based navigation technique 
for VEs with a close resemblance to car steering driving. The relative 
position of both thumbs determines various gestures. These gestures 
are used for 3D navigation in the VE. Navigation includes Forward, 
Backward, Up, Down, and Left and Right side movement. The green 
and yellow color caps made of paper/rubber are used with thumbs. The 
VE consists of different 3D objects as shown in Fig. 10. Identification 
of different gestures leads the virtual object/camera to navigate 
accordingly.

 

   
            

 

 

              

    

a. b.

c. d.

f.e.   

Fig. 10. Scenario of VE (from different perspectives). (a). forward movement, 
(b). backward movement, (c). Upward movement, (d). Downward movement, 
(e). Right turn, (f). Left turn.  

A.	System Architecture
The proposed system uses OpenCV as backend and OpenGl as 

frontend tool. OpenCV is used for image processing, consists of different 
phases such as image acquisition, conversion of image to HSV (Hue, 
Saturation, Value), thresholding for green and yellow colors, and finally 
the calculation of 2D position (x, y) of the specified colors as shown 
in Fig. 11. OpenGL is used for designing and interaction of the VE. 
OpenGL, based on position of colors (Green and Yellow), identifies 
various gestures that leads to different navigation tasks in the VE. 

Fig. 11. (a) Backend (Image processing), (b) Frontend (VE).
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First of all OpenCV performs image acquisition via a camera. The 
image is then converted to HSV for realistic performance which is then 
thresholded for Green and Yellow colors. In the last stage, position of 
both colors is calculated dynamically from the image. OpenGL receives 
the positions of both thumbs colors. On the basis of these positions, 
different gestures are identified which lead to 3D navigation in the VE. 

OpenCV performs image acquisition via ordinary webcam. Finger 
caps of green and yellow colors are used for left and right thumbs of 
both hands. Skin color is omitted to achieve best results as it varies from 
person to person. A rang of Hue, Saturation and Values are selected for 
green and yellow colors to detect thumbs in stable lighting conditions. 
First the region of interest of the image (RI_img) is extracted from the 
Frame Image (F_img) to avoid false detection of the background green 
and yellow colors. The IR_img is then segmented from the F_img 
based on the skin area which is the most probable area to get the thumb 
fingers. YCbCr model has the capability to distinguish between skin 
and non-skin colors [119].
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Fig. 12. Binary images of both hands after conversion to YCbCr.

After getting the binary image of F-Img (see Fig. 12), RI-Img with rows 
'm' and column 'n' is extracted from F-Img using algorithm [120] as,

⋃
,
 ⋃  	 (2)

Where Lml, Rml and Dml represent Left-most, Righ-most and 
Down-most skin pixels of the left hand.

⋃
,
 ⋃  

	 (3)

Where Lmr, Rmr and Dmr represent Left-most, Righ-most and 
Down-most skin pixels of the right hand.

The segmented image RI-Img is then thresholded for green and 
yellow color simultaneously, using HSV color space (see Fig. 13).

RI_Img(x,y)= 

⋀

⋀

⋀

0, Otherwise                                                                  

 

	 (4)

RI_Img(x,y)= 

⋀
⋀
⋀

0, Otherwise                                                                  

 

	 (5)

Fig. 13. Detected thumbs of both hands.

B.	Navigation
Navigation is the movement towards the desired position in a 

VE. OpenCV computes positions of both thumbs in 2D. The z-axis 
movement is deduced from the area variation of the detected thumbs. 
As the area of the thumbs increases with inward and decreases with 
outward movement in z-axis (towards the camera eye) as shown in Fig. 
14 (a, b). So increase from a predefined (threshold) area KA results 
in forward navigation while decrease results in backward navigation. 
The value of KA is half of the fully detected thumb area (near to 
camera eye) which divides the navigation space (z-axis) into two zones 
i.e. Forward and Backward zone, as shown in Fig. 15. For accurate 
navigation in the VE, it is necessary that both thumbs should be visible 
to camera. Movement of both thumbs forward (where detected thumb 
area >KA) towards camera eye results in forward navigation while 
moving thumbs backward (where detected thumb area <KA) produces 
backward navigation.

LPx and LPy represent position of left hand thumb (with green cap) 
in x and y-axis, RPx and RPy are position of right hand thumb (with 
yellow color) in x and y-axis, UZ is the upper zone, LZ is the lower 
zone, and LA and RA represent the detected thumb areas.

The algorithm for forward and backward movement is given below:

If(LA>KA AND RP>KA)
Forward navigation
If(LA<KA AND RA<KA)
Backward navigation

Fig. 14. (a) Detected (Left and Right hand) areas in forward navigation.

Fig. 14. (b) Detected (Left and Right hand) areas in backward movement.
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Fig. 15. Forward and backward navigation zones.

For navigation in y-axis, the thumbs of both hands use UZ or LZ. 
If both thumbs simultaneously move to upper zone (UZ), upward 
navigation (along y-axis) is produced, while at lower zone (LZ), it 
leads to downward navigation as shown in Fig. 16.

Fig. 16. Navigation space for gestures.

RPx,y is the right hand position (x,y), LPx,y left hand position (x,y), 
UZ upper zone, UL lower zone, and CZV is central zone vertical.

The algorithm for moving in vertical (y-axis) direction is given 
below:

If(RPy== UZ AND LPy== UZ)
Upward movement (along +ve y-axis) (see Fig.  17.a)
If(RPy== LZ AND LPy== LZ)
Downward movement (along -ve y-axis) (see Fig.  17.b)

Fig. 17. Gestures for movement (a) Up (b) Down.
                               a.	                                b.

C.	Speed Control
Speed control (Sp) is an important requirement in any navigation 

technique. In the proposed technique, speed can be controlled via 
changing the horizontal (x-axis) distance between both thumbs in 
navigation and turning. The speed remains normal for maximum 
distance while it increases with decrease in relative distance between 
both thumbs i.e. the speed is inversely proportional to the relative 
distance between both thumbs. 

Mathematically it can be written as:

Sp ∝ 1/abs(RPx  - LPx)	 (6)

D.	Turning
Left or right turn is taken by simply comparing the y-position of 

both thumbs. For left turn, the right hand thumb will be in upper zone 
(UZ) while left hand thumb will be in lower zone (LZ). For right turn, 
the right hand thumb will be in lower zone (LZ) while left hand thumb 
will be in upper zone (UZ) as shown in Fig. 16.

The algorithm for turning right and left is given below:

If(RPy> LPy)
Turn left (see Fig. 18.a)
If(RPy< LPy)
Turn right (see Fig. 18.b)

Fig. 18. Gestures for Turning (a) Left (b) Right.
                               a.	                                b.

E.	System Implementation
The proposed system was implemented using Visual Studio 2013 

with corei3 laptop having 1.7 GHz processor, 4GB RAM, and 640x480 
resolution low cost built in camera. The OpenCV, as a backend tool, 
performs different image processing tasks such as acquisition of image 
from camera, identification of thumbs colors (green and yellow), 
and dynamic area and pose calculation of these colors. OpenGL, as 
a frontend tool is responsible for creation and interaction with VE as 
shown in Fig. 19. The system allows users to interact (navigate) with 
VE using his/her both hands thumbs having colored (green, yellow) 
caps. The left hand thumb uses green color while right hand thumb 
uses yellow color cap. The combination and relative position of both 
colored thumb makes different gestures which are used to perform 3D 
navigation in the VE.

Fig. 19. Screen shot of the experimental scenario.

IV.	Experiments and Evaluation

We performed objective and subjective evaluation to assess the 
accuracy and effectiveness of the proposed navigation technique in 
VEs. We also used machine learning models i.e. SVM and kNN to 
assess the accuracy and performance of the proposed gestures.
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A.	Protocol and Task
Forty (40) volunteer male students participated in the experimental 

study. Their ages were in the range of 22 to 35 years. All of them had 
gaming experience with keyboard, mouse, and touch screen but had 
no experience with gesture based VEs. In the training phase all the 
students were demonstrated about the use of proposed system and 
gestures. After that they performed different navigation tasks (Forward, 
Backward, Up, Down, and turning Left, and Right) using the specified 
gestures in the VE. Each student performed five pre-trails of each 
navigation task. After the training session, each participant performed 
four trails of three different navigation tasks in three different lighting 
conditions making a total of 1440 trails. 

1)	Interaction Routes
The experimental environment consisted of three different routes 

from start to stop position as shown in Fig. 20. 

Fig. 20. Complete 2D route model in VE.

2)	Interaction task
The students need to perform four (4) trials of each of the following 

three tasks:
•	 Task 1. The first task was to follow the Route 1 which   covers 

forward navigation (five times), one right turn and four left turns 
as shown in Fig. 20.

•	 Task 2. The second task was to follow the Route 2, which covers 
five forward movements, one left and four right turns. 

•	 Task 3. The third task was to follow the Route 3 which covers 
one upward, two forward, one downward, and one backward 
movement.

3)	Lighting conditions
The proposed system uses colored thumbs for interaction with the 

VE. The detection thumb is highly dependent on the surrounding light. 
So we performed all the tasks in three different lighting intensities.
•	 Low light intensity (3-7 Lux) Dark limit of civil twilight under a 

clear sky [128].
•	 Medium light intensity (50-70 Lux) Family living room lights 

(Australia, 1998) [129] to office building hallway/toilet lighting 
[130-131].

•	 High light intensity (200-500 Lux) Office lighting [129] [132-133], 
sunrise or sunset on a clear day.

After performing the tasks, task completion time (TCT) and errors 
for each task were recorded for objective analysis. Misdetection and 
deviation from the specified route were considered as errors. Finally, 
each participant filled a questionnaire for subjective analysis.

B.	Result Analysis
In this section, we performed objective analysis (task completion time 

and errors) and subjective analysis (questionnaire) to assess the accuracy 
and effectiveness of the proposed navigation technique in VEs.

Objective Analysis

1)	Task Completion Time and Errors
The Mean and SD of time and errors for task 1 is shown in Fig. 21 

and 22. The Mean time and SD is (89.01, 20.02), (82.30, 19.19), and 
(61.98, 15.16) for low, medium, and high lighting intensity respectively. 
The Mean and SD of errors is (3.31, 1.49), (2.19, 1.37), (1.71, 0.97) for 
low, medium, and high light intensities. The Mean for both time and 
errors are minimum for high lighting intensity as compared to other. 
It means that the technique has good performance in higher lighting 
intensity.

Fig. 21. Mean and SD of time for Task 1.

Fig. 22. Mean and SD of errors for Task 1.

The Mean and SD of time and errors for task 2 is shown in Fig. 23 
and 24. The Mean time and SD is (68.24, 17.80), (62.53, 15.00), and 
(51.48, 14.06) for low, medium, and high light intensity respectively. 
The Mean and SD for errors is (2.31, 1.33), (1.96, 1.14), (1.67, 1.02) 
for low, medium, and high light intensities. The Mean and SD for both 
time and errors decreases with increase in lighting.

Fig. 23. Mean time and SD for Task 2.
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Fig. 24. Mean error and SD for Task 2.

The Mean and SD of time and errors for task 3 is shown in Fig. 25 
and 26. The Mean and SD of time is (62.01, 14.11), (56.28, 13.58), and 
(50.24, 13.89) respectively for low (3-7 Lux), medium (50-70 Lux), 
and high (200-500 Lux) light intensity.

Fig. 25. Mean time and SD for Task 3.

Fig. 26. Mean error and SD for Task 3.

2)	Task Learning
The mean task completion time of each task is shown in Fig. 27, 

28, and 29. The results show that the mean time decreases with each 
successive trial which leads to improved task learning. So it means that 
task learning improves with experience. The system intrinsically works 
better in high lighting conditions, while the repetition of task improves 
learning of task performance. The enhanced learning effect is obvious 
due to simple and realistic nature of gestures.

Fig. 27. Mean time of each trial for Task 1.

Fig. 28. Mean time of each trial for Task 2.

Fig. 29. Mean time of each trial for Task 3.

Subjective Evaluation
For the subjective evaluation, each student filled a questionnaire. 

The questionnaire was consisted of different questions related to the 
following topics:

1.	 Cognitive load during interaction
2.	 Technique learning
3.	 Fatigue during interaction

Likert scale is used for scaling purposes where 1 is for lowest level 
and 5 for highest level.

1)	Cognitive Load During Interaction
The main goal of the proposed technique is to use simple and realistic 

alignment of fingers or hands in order to get an easy to learn and use 
interaction. The responses for the question concerned to cognitive load 
on users during interaction is shown in Fig. 30. The results show that 
most of the students opted for lowest (52.5%) and low level (35%) of 
mental load created during interaction. 
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Fig. 30. Cognitive load on user during interaction in VE.

2)	Technique Learning
The navigation technique is developed with the aim of ease in 

learning. Most of the students selected the proposed technique as easy 
to learn as shown in Fig. 31. This figure shows that 35% and 40% 
students opted the highest and high level learning. We used real word 
phenomena/experience for the proposed navigation technique.

Fig. 31. Technique learning.

3)	Fatigue
The students responses concerning the created fatigue during 

interaction is shown in Fig. 32. The results show that there is a 
considerable fatigue (40% students opted for high level and 10% for 
highest) developed during interaction. So we can conclude that fatigue 
(physical) increases gradually with time in restless operations while the 
main reason for creation of fatigue is due to baseless/midair operation 
of hands gestures for long times.

Fig. 32. Fatigue in interaction.

Performance Evaluation of Gesture Recognition
Various authors used different gesture recognition engines for 

recognition such as HMM [121-124], Advanced HMM [125], 
Combined HMM and SVM [126], and kNN [127]. We used SVM 
and kNN models to assess the accuracy of the proposed gestures. To 
evaluate the performance of the proposed system, 20 participants were 

selected to perform 10 trials of each of the six (6) different gestures i.e. 
Forward, backward, upward, downward, left and right. It makes a total 
of 1200 gestures. 

The confusion matrix for SVM (see Table I) shows 95.3% mean 
accuracy of the proposed system with 97% (maximum) accuracy for 
right gesture and 93% (minimum) accuracy for left gesture. 

TABLE I. Confusion Matrix For Svm

The confusion matrix for the proposed system with kNN model 
shows (see Table II) mean accuracy of 95.7% with 99.0% (maximum) 
accuracy for upward gestures and 94% (minimum) accuracy for left 
and right gesture.

TABLE II.  Confusion Matrix for KNN

1)	Comparison of SVM and kNN 
Comparison of both SVM and kNN in terms of accuracy and 

performance is shown in Table III. The results show that kNN has high 
recognition accuracy (95.7 %) as compared to SVM (95.3%). The kNN 
also has high performance rates in terms of training time (3.16 secs) 
and prediction speed (6600 obs/sec) as compared to SVM with 6.40 
secs and (2900 obs/sec).

TABLE III. Comparison of SVM and KNN Based on Recognition 
Accuracy, Training Time, and Prediction Speed

Method Recognition accuracy Training Time Prediction Speed 

SVM 95.3% 6.40 secs 2900 obs/sec 

kNN 95.7% 3.16 secs 6600  obs/sec 
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V.	 Conclusion and Future Work

In this paper, we proposed a novel two hand gesture based 
interaction technique for 3 dimensional (3D) navigation in virtual 
environments (VEs). The system uses computer vision techniques for 
the detection of hand gestures (colored thumbs) from real scene and 
performs different navigation (forward, backward, up, down, left, and 
right) tasks in the VE. The proposed technique also allows users to 
efficiently control speed during navigation. This is implemented via a 
VE for experimental purposes. Forty participants tested the proposed 
technique in different lighting scenarios. Experiments revealed that the 
technique is feasible in normal lighting conditions, easy to learn and 
use, having less cognitive load on users. Its performance is evaluated 
using gesture recognition engines i.e. SVM and kNN. kNN achieves 
high accuracy rates 95.7% as compared to SVM (95.3). kNN also 
has high performance rates in terms of training time (3.16 secs) and 
prediction speed (6600 obs/sec) as compared to SVM with 6.40 secs 
and (2900 obs/sec).

The proposed system is sensitive to lighting conditions. 
In future we will compare our proposed camera based system with 

Motion leap in terms of accuracy, interaction space, update rate, and 
positional distortion. 
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