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I.	 Introduction

MOST of electrical distribution networks feed inductive loads at 
low voltage levels. This effect leads to higher currents and power 

losses accompanied by voltage drop whereas about 13% of the total 
power generation has been considered as line losses [1]. Therefore, 
these losses must be diminished to improve the power system stability 
and reliability, power factor and voltage profile. Connecting shunt 
capacitors is considered as one of the basic methods which has been 
used in distribution systems to solve such problems [2, 3]. However, 
the random locating of capacitors can cause more voltage drop and 
higher power losses. Moreover, the capacitor allocation problem 
has a combinatorial nature because capacitor locations and sizes are 
discrete variables [4]. Therefore, several optimization algorithms have 
been proposed in recent years to solve the optimal shunt capacitor 
placement and sizing problems in radial and ring distribution systems 
for maximizing their benefits. Flower pollination algorithm (FPA) 
[5],  particle swarm optimization (PSO) [6, 7], discrete particle swarm 
optimization (DPSO) [8], genetic algorithm (GA) [9], teaching-
learning-based optimization (TLBO) [10], artificial bee colony 
(ABC) [11], cuckoo search algorithm (CSA) [12], gravitational search 
algorithm (GSA) [13], modified monkey search (MMS) [14], whale 

optimization algorithm (WOA) [15], improved harmony algorithm 
(IHA) [16], fuzzy-GA [17], direct search algorithm (DSA) [18], 
differential evolution algorithm (DEA) [19], simulated annealing (SA) 
[20], plant growth simulation algorithm (PGSA) [21],  fuzzy reasoning 
(FRB) [22],  Analytical IP [23], improved binary particle swarm 
optimization (IBPSO) [24], Mixed-integer nonlinear programming 
(MINLP) [25] and fuzzy real coded genetic algorithm (FRCGA) [26] 
have been proposed to solve the capacitor allocation problem. However, 
some of these algorithms are not highly effective as the power losses 
still have high values [8, 9]. Other algorithms appear to be effective, 
but they may not achieve the optimal cost value [5, 10]. 

Al-Attar et. al [27] has proposed a new optimization technique 
called the moth swarm algorithm (MSA) which is inspired from  the 
orientation of moths towards moonlight. This algorithm is developed 
based on the conventional moth flame algorithm by enhancing its 
exploitation and exploration by applying adaptive cross over levy 
mutation with associative learning mechanism. It is clear from the 
literature review that the MSA technique has not been applied to solve 
the problem of optimal capacitor location in the RDN. Hence, the 
authors propose to use the MSA method for dealing with the mention 
problem. 

In this paper, MSA is presented to minimize the system power 
losses, decrease the total cost and maintain the voltage profile for 
various electrical distribution systems. It is tested on multiple IEEE 
standard distribution systems i.e., (33 and 69-bus). Furthermore, 
it is tested on the mesh distribution systems which have two ways 
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between generation and consumers and this is more complicated in 
design and requires complex protection schemes which includes 
higher investment than RDN.  In addition, the obtained results from 
the proposed approach are compared with those obtained from other 
algorithms to confirm its superiority. The rest of this work is organized 
as follows; section.2 provides the objective function formulation. MSA 
algorithm is represented in section 3. In section.4, the implementing 
of MSA algorithm for solving the capacitor allocation problem has 
been presented. Section 5 shows the numerical results of the proposed 
technique applied on multiple IEEE standard systems. The last section 
concludes the results and advantages of the proposed method. 

II.	 Problem Formulation

A.	Load Flow Calculation
RDN creates some negative conditions such as radial meshed 

networks, unbalanced operation, high R/X ratios and distributed 
generation. Due to these problems, the Newton Raphson, Gauss Siedel 
and other conventional load flow algorithms are not effective to solve 
the load flow calculation of the distribution systems [28]. Therefore, 
the modern algorithm called backward/forward sweep [28] is used in 
this work to analyze the power flow in the tested IEEE distribution 
systems.  The line current Ik is calculated from (1) as follows: 
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The active power flow (Pk+1) and reactive power flow (Qk+1) in RDN 
are calculated by (2) and (3) derived from single-line diagram as shown 
in Fig. 1.
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where k is the sending end and k+1 is the receiving end. Voltages of 
a transmission line and real power losses in the line can be calculated 
from (4), (5), and (6) respectively:
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The total system loss is calculated by summing all line losses in the 
system as shown in (7):
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Fig. 1. Simple radial distribution system.

B.	Objective Functions
The main aim of the objective function of the optimal capacitor 

placement problem is to minimize the total cost per year by reducing 
the real power losses and the cost of installing capacitors subjected 
to voltage and reactive power limits. This paper uses the weighted 
sum method to evaluate the effectiveness of the proposed approach to 
find the benefits of optimal allocation and rating of shunt capacitors. 
The weighted sum method allows the multi-objective to be cast as a 
single-objective mathematical optimization problem resulting in only 
one solution, in addition to its lower computational cost (CPU-time). 
These advantages are more proper for real world problems. Hence, the 
multi-objective functions have been performed by using the following 
mathematical statement: 

)( 21 FFMinf += 	 (8)
where F1 and F2 are described as: F1 =min (PTloss), F2= min (Cost)
where the cost function is defined as:

	 (9) 

C.	Constraint Conditions
The objective function is subjected to: 

1)	Voltage Constraint
The buses voltages are the inequality constraints. The bus voltage 

magnitude of each bus must be maintained within the following range:

maxmin VVV k ≤≤
	 (10)

where Vmax and Vmin are the maximum and minimum values of bus 
(k) voltages. The lower and upper values are taken as 0.9 and 1.05 Pu, 
respectively.

2)	Total Reactive Power Constraint
The total injected reactive power, which represents the equality 

constraints must be limited by:

	 (11)

Tlossdcapsys QQQQ +=+ 	 (12)

Power-flow equations, equality restrictions (2) and (3), can be 
satisfied during the process of power-flow calculation. In the encoding 
period, the inequality restrictions (10)–(12) can be satisfied through 
adding penalty function into the objective function in such a way that it 
penalizes any violation of the constraints. Consequently, the constrained 
optimization problem is then converted into an unconstrained form.

III.	Overview of MSA

The moth swarm algorithm has been presented in 2017 by Al-
Attar et. al [27]. It is inspired from the orientation of moths towards 
moonlight. The available solution of any optimization problem using 
MSA is performed by the light source position, and its fitness is the 
luminescence intensity of the light source. Furthermore, the proposed 
method consists of three main groups, the first one is called pathfinders 
which is considered a small group of moths (np) over the available 
space of the optimization. The main target of this group is to guide 
the locomotion of the main swarm by discriminating the best positions 
as light sources. Prospectors group is the second one which have a 
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tendency to expatiate in a non-uniform spiral path within the section 
of the light sources determined by the pathfinders. The last one is the 
onlookers, this group of moths move directly to the global solution 
which has been acquired by the prospectors. 

The steps of the MSA technique are discussed as follows:

A.	Initialization
Initially, the positions of moths are randomly created for dimensional 

(d) and population number (n) as seen in (13).

	 (13)

where, max
jx  and min

jx  are the upper and lower limits, respectively. 
Afterwards, the type of each moth is selected based on the 

determined fitness. Consequently, the best moths are elected as light 
sources and the following groups of moths (i.e., the best and worse) 
will be dealing as prospectors and onlookers, respectively.

B.	Reconnaissance Phase
The moths may be concentrated in the regions, which seem to be a 

good performance. Therefore, the swarm quality for reconnaissance 
may be decreased during the process of the optimization and this 
process may lead to a stagnation case. To avoid the early convergence 
and enhance the solution diversity, a part of the swarm is compelled to 
determine the less congested area. The moths, which perform this role, 
update their positions by interacting with each other.

A new strategy for the diversity of solutions is presented to choose 
the crossover points. Firstly, the normalized dispersal degree t

jσ  of the 
individuals is measured as follows:

	 (14)

where, .
Then, the coefficient of variation, which measures the relative 

dispersion, is calculated as:

∑ =
=

d

j
t
j

t

d 1

1 σµ
	 (15)

Any element of the pathfinder moths exposed to a low dispersal 
degree will be taken in the group of crossover points Cp, as described 
below: 

To complete the full trail solution, each host vector (i.e., pathfinder 
solution) will update the position through the crossover processes by 
integrating the modified variables of the sub-trail solution into the 
analogical variables. The full trial solution Vpj can be defined as:

	 (16)

C.	Lévy Flights 
Lévy flights/motions are random processes based on α-stable 

distribution with ability to travel over large scale distances using 
different size of steps. Lévy α-stable distribution strongly linked with 
heavy-tailed probability density function (PDF), fractal statistics, and 
anomalous diffusion. The PDF of the individual jumps αλ −−≈ 1)( qq  
decaying at large generated variable q. The stability/tail index  

α ϵ [0, 2] or so called the characteristic exponent describes the shape 
of the distribution taper [27]. There are a few special cases that have 
a close form for the density of the general Lévy distribution, and can 
be defined as:
•	 Gaussian or normal distribution, ),( 2

GNq σµ≈  if density is:
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•	 Cauchy distribution, ),( µσcauchyq ≈  if density is:

∞<<∞−
−+

= q
q

qf
))((

1)( 22 µσπ 	 (18)

•	 A simple version of Lévy distribution,  if density is:
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Mantegna’s algorithm [27] is used to emulate the α-stable distribution 
by generating random samples Li that have the same behavior of the 
Lévy-flights, as follows:

	 (20)

where, step is the scaling size related to the scales of the 
interest problem, ⊕ is the entrywise multiplications, ),0( 2

uNu σ=  
and ),0( 2

yNy σ=  are two normal stochastic distributions with

, 1=yσ .

D.	Difference Vectors Lévy-Mutation 
For  crossover operations points, the proposed algorithm 

creates the sub-trial vector  by perturbing the 
selected components of the host vector , with 
related components in the donor vectors (e.g. ).  
The Mutation strategy may be used for synthesis such a sub-trail 
vector, as follows:
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where, Lp1 and Lp2 are two independent identical variables used as 
the mutation scaling factor and generated by a heavy tail Lévy-flights 
using (Lp~random(nc )Θ Levy(α)). The set of mutually indices (r1, r2, 
r3, r4, r5, and p) are exclusively selected from the pathfinder solutions. 

E.	Selection Strategy
The fitness value of the full trail solution is determined after finishing 

the last procedure, and then it is compared with its corresponding host 
solution. The suitable solutions are selected to continue for the next 
generation, which is used for minimization problems as follows:

	 (22)

The probability Pp which is proportional to luminescence intensity 
fitp can be calculated from (23) and fitp is estimated from the objective 
function value fp with minimization problems from (24).
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F.	 Transverse Orientation
The prospector moths are the next best luminescence intensity 

group of moths. The number of prospectors nf is proposed to decrease 
through all iterations T as follows:
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After the pathfinders have finished their search, the information 
about luminescence intensity is shared with prospectors, which attempt 
to update its positions in order to discover new light sources. Each 
prospector moth xi is soared into the logarithmic spiral path as shown 
in Fig. 2(a) to make a deep search around the artificial light source xp, 
which is chosen on the basis of the probability Pp using (23). The new 
position of ith prospector moth can be expressed mathematically as 
follows:

	 (26)

where, θ∈[r,1] is a random number to define the spiral shape and 
r=-1-t⁄T. Although the same formula has been used in Moth-flame 
Optimization (MFO) [27] algorithm, the MSA is dealing with each 
variable as an integrated unit. In the MSA model, the moths are changed 
dynamically. Therefore, any prospector moth uplifts to become 
pathfinder moth if it discovers a solution with luminescence more than 
the existing light sources. That means the new lighting sources and 
moonlight will be presented at the end of this stage.

G.	Empyreal Navigation
The diminishing of the number of prospectors during the 

optimization process increases the onlookers number (no= n-nf-np). 
This may lead to an increase in the speed of the convergence rate of 
MSA towards the global solution. The onlookers are the moths that 
have the lowest luminescent sources in the swarm. Their main aim for 
traveling directly to the moon is the most shining solution as shown in 
Fig. 2(b).  In the MSA, the onlookers are forced to search for the hot 
spots of the prospectors effectively. These onlookers are divided into 
the two following parts:

The first part, with the size of )2/( oG nroundn = , walks according 
to Gaussian distributions using (5). The new onlooker moth in this sub-
group 1+t

ix  moves with series steps of Gaussian walks, which can be 
described as follows:
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Where, ε1 is a random number generated from Gaussian distribution, 

ε2 and ε3 are random samples drawn from a uniform distribution within 
the interval [0,1], bestg is the global best solution (moonlight) obtained 
in the transverse orientation phase. Based on many optimization 
algorithms, there is a memory to transfer information from the current 
generation to the next generation. However, the moths may fall into the 
fire in the real world due to the lack of an evolutionary memory. The 
performance of moths is intensely affected by the short-term memory 
and the associative learning [27]. The associative learning has an 
important role in connection among moths. Therefore, the second part 
of onlooker moths GA nn −= on  will sweep towards the moon light 
depending on the associative learning operators with an instantaneous 
memory to imitate the actual behavior of moths in nature. The 
instantaneous memory is initialized from the continuous uniform of 
Gaussian distribution on the range from min

i
t
i xx −  to max

i
t
i xx − . The 

updating equation of this type can be completed in form:

	(29)

where, r1 and r2 are random number within the interval [0, 1], 2g/G 
is the social factor, 1-g/G is the cognitive factor and bestp is a light 
source selected from the modified swarm based on the probability pi. It 
is worth mentioning that the constraints are checked and satisfied after 
each fitness evaluation in the flowchart of MSA (see Fig. 3).

   
Fig. 2 Orientation behavior of moth swarm: (a) Moth flying in a spiral path 
into nearby light source (b) Moth flying in a fixed angle relative to moonlight.

IV.	Numerical Experiments of MSA

In order to tune the parameters of the proposed MSA and evaluate 
its performance in terms of exploitation, exploration, convergence 
behavior and solution quality, a set of 23 benchmark functions 
commonly used in literature were tested. The details of these functions 
are given in [29]. In this section, a swarm of 50 moth with seven 
pathfinders has been employed over 50 independent runs with a 1000 
maximum number of function evaluations for f1 – f13 and 500 iteration 
for f14 – f23. MSA is compared with four metaheuristics algorithms, 
including MPSO [30], Modified Differential Evolution (MDE) [31] 
approach, MFO [32], and Flower pollination algorithm (FPA) [5], 
respectively. To maintain comparison consistency, these algorithms are 
tested with 50-population size under the same conditions and using 
their standard control-parameters setting as given in Table I. The mean 
and the standard deviation are used in order to assess the robustness of 
the algorithms under study.

A.	Determination Control Parameters in MSA
In nature, light can be dangerous and a large number of artificial 

lights will decrease the flight activity of moths. A statistical study 
has been used to specify the required number of pathfinders, and the 
obtained results for a swarm of 50 moths at different values of np are 
illustrated at Table II appendix (A). Judging from Table II, it can be 
seen that, the best required number of pathfinders is approximately 
13% of the total populations.
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Fig. 3. Flowchart of the proposed MSA.
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B.	Exploitation Analysis Based on Unimodal Benchmark 
Functions

The first set of experiments aimed to benchmark the exploitation 
ability of the proposed MSA. The unimodal function (f1 – f7), are 
designed to compare the convergence rate of the search algorithms. 
In the MSA, pathfinders and prospectors primarily carry out the 
exploration (global search). The mean and the standard deviation 
(noted as StDev) are performed as reported in Table III in appendix 
A. According to the overall rank, although the MSA and MPSO are 
satisfied the condition of convergence rate and significantly better than 
other metaheuristic algorithms, the MSA is stronger than MPSO in 
fine tuning around the global optimum due to its better global search 
ability. On the other hand, MFO is mainly searched in a small local 
neighborhood. In addition, the widespread step of the FPA is not a 
guarantee for obtaining the advanced order.

C.	Exploration Analysis Based on Multimodal Benchmark 
Functions

A test suite has been employed to compare MSA performance with 
other algorithms at the high-dimensional multimodal functions (f8 – 
f13), and the final results are summarized in Table IV in appendix (A). It 
is obvious that, MSA and MDE are clearly escaped from the poor local 
optimum, and the GMSA approaches the neighborhood of the global 
optimum at f8 and hits the exact optimum every time at (f9 – f11). On the 
other hand, the Lévy-flights updating strategy of FPA maintains a small 
protection against the premature convergence; whereas the MFO has a 
low probability to make such a long jumps, which may be the reason 
for its poor average best fitness.

The experimental study for the low-dimensional multimodal 
functions (f14 – f23 ), given in Table V appendix (A).  , shows that the MSA 
and MDE have the best results compared to the rest of the algorithms, 
while MPSO has difficulties with functions of this kind. Although f18 
is an easy problem, the GMSA has failed to find the global optimum 
solution as other algorithms. In the three Shekel functions (f21 – f23), 
FPA obtains a better average performance than the other optimizers.  
In sum, the algorithms achieve a similar performance ranking for both 
multimodal categories, where MSA is ranked 1st followed by MDE, 
MPSO, MFO, FPA, respectively. To validate the comparative study, 
the pairwise Wilcoxon’s rank-sum test, a nonparametric statistical test, 
is carried out at 0.05 significance level to judge whether the results 
of the GMSA differ from the other algorithms in a statistical method. 
The ρ-values of the Wilcoxon’s rank-sum, based on outcomes of Tables 
III-V in appendix (A), are displayed in Table VI appendix (A). In this 
table, the -values that are less than 0.05 proved a sufficient evidence 
against the null hypothesis. 

In order to verify the solution quality and further assess the 
robustness of the proposed algorithms, the graphical analysis of the 
Analysis of Variance (ANOVA) test for functions f4, f8, and f21 are used, 
as depicted in Fig. 4. The boxplots confirm that MSA achieves, on 
average, superiority in comparison with the rest of the algorithms. 

D.	Analysis of the Convergence Behavior
The algorithms under study have been executed on 50 independent 

runs in order to assess their robustness through the mean and the 
standard deviation. To investigate the convergence behavior of 
the best evolution curves for the proposed methods are seen in Fig. 
5. Generally, MSA and MPSO have smooth curves with a faster 
convergence rate more than the other algorithms. Whereas, the MPSO 
suffers from a premature convergence, caused by particles stagnating 
around local optima, when handling nonlinear functions. MFO has 
linear characteristics, meanwhile suffers from excessively slow rate as 
in f10. In other hand, the MDE and FPA have non-smooth convergence 
characteristics. We can say that, the developed optimization algorithm 

is a deep-PSO, fast-MFO and linear convergence of MDE and FPA. 
Seven benchmark functions are used to assess the convergence speed 
of the MSA against the four techniques under study and the well-
known PSO [33], group search optimizer (GSO) [33] and modified 
group search optimizer (MGSO) [34] as shown in Table VII appendix 
(A). It is clear that MFO gives less computational time cost than the 
other algorithms. This is because MFO owns one updating equation 
even though it applies to each component of variables. Although, the 
MSA contains a number of strategies, but each of them apply to a 
certain group of the population. Except the small group pathfinders, all 
moths are dealing with each variable as an integrated unit. In addition, 
no longer need to store the velocities and personal best solution for 
each onlooker moth, as in the basic PSO. These properties made the 
MSA give acceptable computational cost results. The MPSO has a 
higher cpu-time than the other methods, which may be attributed for 
the application of the two modifications on all particles. It is important 
to point out that, the MPSO and MSA have the highest convergence 
speed and therefore the quickest answer to the problem at hand.

Fig. 4. ANOVA tests for different algorithms.
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Fig. 5. Comparison of convergence curves of GMSA and literature algorithms 
obtained in some of the benchmark problems.

V.	 Results and Discussion of Radial Distribution System

To evaluate the efficiency of the proposed MSA method against 
power loss and energy cost minimization, The IEEE radial distribution 
systems of 33 and 69-bus have been applied for this simulation.  The 
MATLAB is used to implement the MSA technique for the optimal 
capacitor placement problem.

This study includes the annual cost of real power loss and the 
total capacitor banks. The obtained results are compared with other 
conventional algorithms over 50 independent runs described as follows. 

A.	IEEE 33-Bus Test System
To evaluate the impact of the proposed MSA on the medium scale 

of distribution system, the IEEE 33-bus system has been tested. Fig. 
6 shows the single line diagram of this system. The system rated 
voltage is 12.66 kV. The load and line data are given in [13]. Load 
flow calculation is run before compensation, the minimum bus voltage 
is registered as 0.9036 p.u at bus 18 and the total active power loss is 
210.98 kW with the annual energy losses cost of 35442.96 $. Using the 
proposed MSA method, only three capacitors are allocated at optimal 
locations at buses 12, 24 and 33 with the size of 450, 600 and 900 kVAR, 
respectively. As a result, the real power loss is diminished to 137.227 
kW as 35.02% of the base case. Furthermore, as seen from Table VIII, 
MSA reduced the total losses by 34.55 kW compared with Analytical 
IP [23], 14.52 kW compared with SA [20], 6.81 kW compared with GA 
[9] and 4.01 kW compared with FRCGA [26]. Also, The annual energy 
cost is diminished from 35442.96$ to 23446.98$ with a net saving of 
33.85%, which is the best percentage value compared with 30.29% of 
GA [9], 31.66% of FRCGA [26], 26.94% of SA [20] and 17.17% of 
analytical IP [23] as seen in Table VIII in Appendix (A). 
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Fig. 6. Single line diagram of IEEE 33-bus RDN [13].
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Fig. 7. System Voltage Profile for 33-bus system.

In addition, the system voltage profile is improved and the worst 
bus voltage is enhanced to 0.9329 PU as shown in Fig. 7. These results 
have validated the performance and effectiveness of the proposed MSA 
method. Furthermore, the minimization of active power loss and total 
cost is stabilized with the fast and smooth convergence as shown in 
Figs. 8 and 9. It is shown that the proposed MSA is more effective than 
the conventional algorithms under the medium scale of distribution 
system.

Fig. 8. Power loss convergence of 33-bus system with MSA.

Fig. 9. Total cost convergence of 33-bus system with MSA.

B.	IEEE 69-Bus Test System
The proposed MSA is further applied on the IEEE 69-bus 

system which consists of 69 buses and 68 branches as shown in 
Fig. 10. The rated line voltage is 12.66 kV and total system load is 
(1.896MW+j1.347MVAR). The details load and line data are reported 
in [13]. After running the power flow calculation and before placing 
the capacitors banks in the RDN, the power loss is obtained at 
224.975 kW with the lowest bus voltage at bus 65 is (0.9092 p.u.) and 
the total energy losses cost is 37800 $ per year. When applying the 
proposed method on this RDN, the best active power loss reduction 
is at 145.404 kW which increased the percentage of loss reduction to 
35.37%. This result shows the best value when it is compared with 
30.37% of GA [8], 32.22% of PSO [6], 34.66% of DSA [17], 34.95% 
of TLBO [9], 34.23% of CSA [11], 35.14% of GSA [12] and 35.2% of 
FPA [5]. This result is considered as the greatest value compared with 
other algorithms in Table IX Appendix (A). It is found that only three 
capacitor banks with optimum ratings of 450, 150 and 1200 kVAR 
have been installed at buses 12, 21 and 61, respectively. Furthermore, 
the MSA has minimized the total cost per year to 24820.84$ instead 
of 37800$ before compensation. The annual net saving is increased to 
34.34% as shown in Table IX in appendix (A). This table displays the 
statistical performance of the proposed MSA with the best, worst and 
average values of the total cost for 50 independent runs. Moreover, 
Fig. 11 confirms the effectivity of the proposed technique by showing 
the improvement in system voltages. The minimum voltage has 
been improved to 0.9324 p.u. which is compatible with the voltage 
constrains. In addition, the fast and effective response of the MSA 
appears in the convergence curves of total real power loss and total 
cost in Fig. 12 and 13. The best result obtained from the 50 independent 
runs for the radial distribution systems were shown in Fig. 8, 9, 12, 
and 13. 
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Fig. 10. Single line diagram of IEEE 69-bus RDN [13].

Fig. 11. System Voltage Profile for 69-bus system.
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Fig. 12. Power loss convergence rate of 69-bus system with MSA.

Fig. 13. Total cost convergence rate of 69-bus system. 

VI.	Results for Ring Distribution Systems

In this section, the proposed MSA optimization method is tested on 
the complex power systems known as the ring distribution systems, 
which are more sensitive to variations and uncertainties. Moreover, the 
ring main system is considered more complex than the radial system 
in terms of load flow problems and improper coordination problems. 
The ring distribution systems are built by modifying the standard IEEE 
33 and 69-bus.

A.	IEEE 33-Bus System
The radial IEEE 33-bus system is reconfigured to the ring main 

system as shown in Fig. 14. It consists of sectionalized switches from 1 
to 32 and tie-switches from 33 to 37. In case of converting the system 
from radial to ring by using tie-lines (33 to 37), the power loss reduced 
to 202.68 kW and minimum bus voltage is 0.913 p.u. With optimal 
reconfiguration (7-11-14-32-37), it can reduce the active power loss 
by 41.2% and improve the minimum voltage to 0.938 p.u. On the 
other hand, applying the MSA method on the ring main system for 
determining the optimal locations and sizes of capacitor banks needs 
to minimize the power loss with optimal reconfiguration. The result-
based MSA shows a good performance as only three locations have 
been selected at buses 6, 24 and 33 with total reactive power of 1500 
kVAR. Furthermore, the total active power loss is reduced with 69.1% 
from the base case which is better than the other methods as seen in 
Table X appendix (A). This table summarizes a detail comparison 
between the MSA, BGSA [35], HSFLA [36], PSO [36], IPSO [36] 
and ACO [36] for active power loss, minimum voltage and reduction 
percentage. Moreover, for all bus voltages-based the MSA method 
are maintained within desirable values and higher than 0.964 p.u as 

shown in Fig. 15. In addition, Fig. 16 shows the effective performance 
of MSA as total power loss converges smoothly to its minimum values 
without fluctuations.

2
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Fig.14. Single line diagram of IEEE 33-bus Ring system (Tie switches = 21-8; 
9-15; 12-22; 18-33; 25-29). 

Fig. 15. Bus Voltage Profile of 33-bus Ring system.

Fig. 16. convergence rate of 33-bus ring system with MSA. 

B.	IEEE 69-Bus System
The MSA method is further implemented on the large IEEE 69-bus 

test system after converted to a ring main system as shown in Fig. 17. 
It consists of sectionalized switches from 1 to 68 (normally closed) 
and tie-switches from 69 to 73 (normally open). In the base case with 
tie switches (69-70-71-72-73), the total power loss and the minimum 
bus voltage are at 224.97 kW and 0.909 p.u, respectively. In case of 
optimal reconfiguration, it can reduce the active power loss by 59.17% 
and increase the minimum bus voltage to 0.9877 p.u. as shown in Fig. 
18. On the other hand, when installing capacitors banks in the ring 
main system and implementing the MSA technique for optimizing 
their locations and sizes gives the great results. Only three locations at 
buses 11, 50 and 61 have been selected to install capacitors with total 
reactive power 1500 kVAR. In addition, the total active power loss is 
diminished by 93.98% from the base case. This result is considered the 
best comparing with other techniques such as BFO [37], TSA [38], BA 
[39] and WOA [40] as seen in Table XI in appendix (A). Moreover, the 
minimum bus voltage increased to 0.99 p.u, which is considered a very 
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good value as seen in Fig. 18. Furthermore, the effectiveness of the 
proposed MSA is seen in Fig. 19, which shows the fast convergence 
of the total active power loss. The best results obtained from the 50 
independent runs for the ring distribution systems were shown in Fig. 
16 and 19. 
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Fig. 17. Single line diagram of IEEE 69-bus Ring system (Tie switches = 11-
43; 13-21; 15-46; 50-59; 27-65).

Fig. 18. Bus Voltage Profile of 69-bus Ring system.

Fig. 19. Convergence rate of 69-bus ring system with MSA. 

VII.	Conclusion

In this article, a novel MSA paradigm has been presented with two 
new optimization operators of adaptive crossover based on population 
diversity and associative learning mechanism with immediate memory, 
which may be appropriate to hybrid with other algorithms in the future. 
Twenty-three commonly used benchmarks under different statistical 
metrics are employed to verify the effectiveness of proper hybridization 
in terms of convergence, local optima avoidance, robustness, 
computational cost, exploration, and exploitation. From the obtained 
results, the final algorithm can be considered a hybrid of algorithms 
of the PSO, DE, MFO, and PFA in line with the natural characteristics 
of the moth swarm, and suitable for solving the complex problems. 
The comparative study with several metaheuristic search techniques, 
confirms the primacy of the proposed paradigm and its potential to find 
accurate, fast and robustness solutions. 

MSA approach has been successfully applied on the small, medium 
and large scale electrical distribution systems to solve the problem of 
capacitors allocation for minimizing the real power losses and annual 
energy cost, which is considered as an attractive economic issue. MSA 
superiority is clarified by testing it on radial/ring IEEE distribution 
networks (33 and 69-bus systems). Furthermore, the proposed MSA 
can improve the voltage profile at each bus in the systems. Moreover, 
overall numerical results obtained from the proposed MSA method 
such as minimum voltage, active power loss, power loss cost, capacitor 
cost, annual energy cost, net saving cost and CPU time have been 
compared with other algorithms. The MSA method presents a desirable 
and superior performance with stable convergence against the other 
techniques. The applications of the proposed MSA method can be 
considered as the most recent optimization algorithms for the network 
reconfiguration and dealing with the protection coordination system in 
presence of capacitors banks and distribution generation during grid 
faults are the future scope for this work. 

Appendix (A)

Nomenclature

Pk Real power flow from bus k

Qk Reactive power flow from bus k

PLk Real power load connected at bus k 

QLk Reactive power load connected at bus k 

PL(k+1) Real power load connected at bus k+1 

QL(k+1) Reactive power load connected at bus k+1 

Rk Resistance connected between buses k and k+1  

Xk Reactance connected between buses k and k+1  

Vk Voltage at bus k

Vk+1 Voltage at bus k+1

Ke The annual cost co-efficient per unit of power losses [13]

Kfc Cost co-efficient in $/KVAR (3) [17]  

ε1 Random samples drawn from Gaussian stochastic distribution

Qfc Reactive power compensation

Vmin Minimum bus voltage value

Vmax Maximum bus voltage value

PT loss Tap setting of transformer

np Number of pathfinders moths

µt Variation coefficient
t
jσ Dispersal degree

bestg The global best solution

r1, r2 Random number within the interval [0, 1]

Pj The real power loss during jth load level

n The number of candidate buses

Qfc The size of the shunt capacitor

ε2, ε3
Random numbers distributed uniformly within the interval 
[0,1]
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TABLE VI. ρ-Values Calculated For Wilcoxon’s Rank-sum Test (p>=0.05 Have been Underlined)

MPSO MDE MFO FPA

F1 0.0742443 0.0418114 0.01228 6.263E-010

F2 0.0044408 0.041814 2.0318E-008 5.7225E-009

F3 4.1048E-005 6.263E-010 6.263E-010 6.263E-010

F4 5.5847E-005 2.9812E-007 6.263E-010 1.6501E-008

F5 5.7467E-009 7.0497E-010 7.0497E-010 6.2928E-010

F6 0.0742443 0.041814 0.021081 6.263E-010

F7 0.00048083 0.00048083 4.7908E-005 0.00048083

F8 1.6501E-008 1.6501E-008 1.6501E-008 1.6501E-008

F9 7.0165E-010 6.263E-010 6.263E-010 6.263E-010

F10 0.0022103 0.041814 3.6027E-007 1.6501E-008

F11 0.0081071 0.041814 3.0022E-005 1.6501E-008

F12 0.031296 0.041819 0.0003429 1.6567E-008

F13 0.03577 0.041814 0.00044952 7.0165E-010

F14 4.4603E-007 4.448E-007 8.304E-007 3.2786E-007

F15 0.0026421 0.00048083 0.00048045 0.00048083

F16 0.0011031 0.0011031 0.0011031 0.015781

F17 8.4451E-006 8.4451E-006 8.4451E-006 4.9194E-006

F18 2.7033E-008 6.9137E-009 2.4213E-008 1.6501E-008

F19 8.4451E-006 8.4451E-006 8.4451E-006 0.00048083

F20 0.00056673 0.0013295 0.0018718 0.0031498

F21 8.3938E-006 2.7552E-006 3.1691E-005 4.9194E-006

F22 6.4387E-005 2.885E-006 3.4065E-006 4.9194E-006

F23 5.8609E-006 1.2815E-007 3.613E-008 3.2786E-007

Table VII. Comparisons of Average CPU Time (s) For some of Benchmark Functions

MSA MPSO MDE MFO FPA MGSO[34]a PSO[33]b GSO[33]b

F1 4.8359 10.6167 8.1457 3.2555 4.6371 8.98 36.3 27.6

F5 4.9062 10.6391 8.8892 3.8525 5.3113 18.4 37.6 27.8

F7 5.8201 10.4509 10.4318 4.3053 5.4247 19.7 41.4 31.4

F8 4.9735 9.9465 8.3939 3.3662 4.8413 20.5 43.0 32.7

F9 5.0244 10.0350 8.3013 3.4761 4.4404 10.5 71.4 50.1

F10 5.5109 11.0692 9.0345 4.0075 4.9402 12.4 44.1 34.4

F11 5.2731 10.5239 9.0721 3.7285 4.7920 34.8 45.4 35.9
a The experiments were carried out on a PC with a 2.60-GHz Intel Processor and 2.0-GB RAM. 
b The experiments were carried out on a PC with a 1.80-GHz Intel Processor and 1.0-GB RAM.

TABLE VIII. Comparison Results Using Different Optimization Techniques for (33-Bus System)

Methods Vmin
(P.U)

Optimal location
(Bus no.)

Optimal size (kVAR)
Ploss (kW) Cost of

Ploss ($)
capacitor
cost ($)

Worst 
Total 

cost ($)

Mean 
Total cost 

($)

Best Total 
cost ($)

Total cost 
reduction

CPU 
Time (s)

Base Case 0.903 - 210.98 35442.9 - -

MSA 0.932 12(450),24(600),30(900) 137.23 23054.1 392.85 23627 23534.6 23446.98 33.85% 5.4

GA [9] NA 7(850), 29(25), 30(900) 144.04 24198.7 507.15 NA NA 24705.87 30.29% NA

FRCGA [21] NA 28(25), 6(475), 29(300), 
8(175), 30(400), 9(350) 141.24 23728.3 492.86 NA NA 24221.18 31.66% NA

Analytical
IP [23] 0.950 9(450), 29(800), 30(900) 171.78 28859.0 499.35 NA NA 29358.39 17.17% NA

SA [20] 0.959 10(450), 30(350), 14(900) 151.75 25494 401.052 NA NA 25895.05 26.94% NA
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TABLE IX .Comparison Results Using Different Optimization Techniques for (69-Bus System)

Methods Vmin (p.u)
Optimal location

(bus no.)
Optimal size (kVAR)

Ploss (kW) Cost of
Ploss ($)

capacitor
cost ($)

Worst 
Total cost 

($)

Mean Total 
cost ($)

Best Total 
cost ($)

% Total 
cost 

reduction

CPU 
Time (s)

Base Case 0.909 - 224.98 37800 - -

MSA 0.932 21(150), 12 (450),61(1200) 145.41 24427.99 392.85 24987.9 24908.2 24820.8 34.3 11.42

Fuzzy-GA 
[17] 0.936 59(100), 61(700), 64(800) 156.62 26312.16 424.8 NA NA 26736.9 29.2 NA

PSO [6] NA 46(241), 47(365), 50(1015) 152.48 25616.64 433.99 NA NA 26050.6 31.1 NA

DE [18] 0.931 57(150), 58 (50), 61(1000), 
60(150), 59(100) 151.38 25431.84 316.1 NA NA 25747.9 31.8 NA

TLBO [10] 0.932 22(300), 61(1050), 62(300) 146.35 24586.8 446.4 NA NA 25033.2 33.7 15.76

CSA [12] NA 21(250), 62(1200) 147.95 24855.6 291.5 NA NA 25147.1 33.4 NA

GSA [13] 0.951 26(150), 13(150), 15(1050) 145.9 24511.2 451.5 NA NA 24962.7 33.9 NA

TABLE X. Comparison Results Using Different Optimization Techniques for 33-bus Ring system

Techniques Vmin (p.u) Ploss (kW) % Loss reduction Optimal location (bus no.)  
Optimal size (kVAR) Tie switches

Base Case 0.913 202.68 - - 33-34-35-36-37

MSA 0.9642 62.68 69.1 6(150), 24(450),30(900) 7,11,14,32,37

PSO [36] 0.9635 95.38 52.93 9(300), 10(300), 31(300), 6(600), 
29(600) 7-10-14-36-37

IPSO [36] 0.9656 98.83 51.23 5(300), 13(300), 32 (300), 
28(1200) 11-28-33-34-36

IBPSO [36] 0.9585 93.06 54.08 11(300), 24(300), 32(300), 
6(600), 29(600), 7-9-14-32-37

ACO [36] 0.9656 95.79 52.73 20(600), 28(450), 29(600) 7-9-14-32-37

BGSA [35] 0.956 113.56 43.97 5(NA), 27(NA), 28(NA) 10-14-28-32-37

HSFLA [36] 0.9585 92.58 54.32 300(2-4-10-11-18-24-28-29-30) 7-11-14-32-37

TABLE XI. Comparison Results Using Different Optimization Techniques for 69-bus Ring System

Techniques Vmin (p.u) Ploss (kW) % Loss reduction
Optimal location (bus no.)  

Optimal size (kVAR)
Tie switches

(bus no.)

Base Case 0.9092 224.97 - - 69-70-71-72-73

MSA 0.990 13.534 93.98 11(450), 50(150),61(900) 14-45-52-69-70

BFO [37] 0.9534 33.63 85.05 11(300), 49(450), 61(900) 4-56-61-69-70

TSA [38] 0.956 108.94 51.58 24(100), 45(200), 49(300), 
61(400) 14-20-52-61

BA [39] 0.9561 88.413 60.7 27(1350), 37(2250), 62(1200) 11-58-69-70-73

WOA [40] 0.99 66.74 70.3 50(350), 61(1050), 64(390) 13-18-56-61-69
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