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This work presents a hybrid heuristic search algorithm called Moth Swarm Algorithm (MSA) in the context of
power loss minimization of radial distribution networks (RDN) through optimal allocation and rating of shunt
capacitors for enhancing the performance of distribution networks. With MSA, different optimization operators
are used to mimic a set of behavioral patterns of moths in nature, which allows for flexible and powerful
optimizer. Hence, a new dynamic selection strategy of crossover points is proposed based on population
diversity to handle the difference vectors Lévy-mutation to force MSA jump out of stagnation and enhance
its exploration ability. In addition, a spiral motion, adaptive Gaussian walks, and a novel associative learning
mechanism with immediate memory are implemented to exploit the promising areas in the search space. In
this article, the MSA is tested to adapt the objective function to reduce the system power losses, reduce total
system cost and consequently increase the annual net saving with inequity constrains on capacitor size and
voltage limits. The validation of the proposed algorithm has been tested and verified through small, medium
and large scales of standard RDN of IEEE (33, 69, 85-bus) systems and also on ring main systems of 33 and
69-bus. In addition, the obtained results are compared with other algorithms to highlight the advantages of the
proposed approach. Numerical results stated that the MSA can achieve optimal solutions for losses reduction

Radial Distribution
System, Optimal
Capacitor Location, Loss
Reduction, Moth Swarm
Algorithm.

and capacitor locations with finest performance compared with many existing algorithms.

[. INTRODUCTION

OST of electrical distribution networks feed inductive loads at

low voltage levels. This effect leads to higher currents and power
losses accompanied by voltage drop whereas about 13% of the total
power generation has been considered as line losses [1]. Therefore,
these losses must be diminished to improve the power system stability
and reliability, power factor and voltage profile. Connecting shunt
capacitors is considered as one of the basic methods which has been
used in distribution systems to solve such problems [2, 3]. However,
the random locating of capacitors can cause more voltage drop and
higher power losses. Moreover, the capacitor allocation problem
has a combinatorial nature because capacitor locations and sizes are
discrete variables [4]. Therefore, several optimization algorithms have
been proposed in recent years to solve the optimal shunt capacitor
placement and sizing problems in radial and ring distribution systems
for maximizing their benefits. Flower pollination algorithm (FPA)
[5], particle swarm optimization (PSO) [6, 7], discrete particle swarm
optimization (DPSO) [8], genetic algorithm (GA) [9], teaching-
learning-based optimization (TLBO) [10], artificial bee colony
(ABC) [11], cuckoo search algorithm (CSA) [12], gravitational search
algorithm (GSA) [13], modified monkey search (MMS) [14], whale
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optimization algorithm (WOA) [15], improved harmony algorithm
(IHA) [16], fuzzy-GA [17], direct search algorithm (DSA) [18],
differential evolution algorithm (DEA) [19], simulated annealing (SA)
[20], plant growth simulation algorithm (PGSA) [21], fuzzy reasoning
(FRB) [22], Analytical IP [23], improved binary particle swarm
optimization (IBPSO) [24], Mixed-integer nonlinear programming
(MINLP) [25] and fuzzy real coded genetic algorithm (FRCGA) [26]
have been proposed to solve the capacitor allocation problem. However,
some of these algorithms are not highly effective as the power losses
still have high values [8, 9]. Other algorithms appear to be effective,
but they may not achieve the optimal cost value [5, 10].

Al-Attar et. al [27] has proposed a new optimization technique
called the moth swarm algorithm (MSA) which is inspired from the
orientation of moths towards moonlight. This algorithm is developed
based on the conventional moth flame algorithm by enhancing its
exploitation and exploration by applying adaptive cross over levy
mutation with associative learning mechanism. It is clear from the
literature review that the MSA technique has not been applied to solve
the problem of optimal capacitor location in the RDN. Hence, the
authors propose to use the MSA method for dealing with the mention
problem.

In this paper, MSA is presented to minimize the system power
losses, decrease the total cost and maintain the voltage profile for
various electrical distribution systems. It is tested on multiple IEEE
standard distribution systems i.e., (33 and 69-bus). Furthermore,
it is tested on the mesh distribution systems which have two ways
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between generation and consumers and this is more complicated in
design and requires complex protection schemes which includes
higher investment than RDN. In addition, the obtained results from
the proposed approach are compared with those obtained from other
algorithms to confirm its superiority. The rest of this work is organized
as follows; section.2 provides the objective function formulation. MSA
algorithm is represented in section 3. In section.4, the implementing
of MSA algorithm for solving the capacitor allocation problem has
been presented. Section 5 shows the numerical results of the proposed
technique applied on multiple IEEE standard systems. The last section
concludes the results and advantages of the proposed method.

II. PROBLEM FORMULATION

A. Load Flow Calculation

RDN creates some negative conditions such as radial meshed
networks, unbalanced operation, high R/X ratios and distributed
generation. Due to these problems, the Newton Raphson, Gauss Siedel
and other conventional load flow algorithms are not effective to solve
the load flow calculation of the distribution systems [28]. Therefore,
the modern algorithm called backward/forward sweep [28] is used in
this work to analyze the power flow in the tested IEEE distribution
systems. The line current /, is calculated from (1) as follows:

B +0O,
|- 2o
il
M
The active power flow (P, ,) and reactive power flow (Q,,,) in RDN

are calculated by (2) and (3) derived from single-line diagram as shown
in Fig. 1.

Pk+1 = Pk _PL(k+1) _Rk|1k|2

2
Qk+1 = Qk - QL(k+1) - Xk|]k| 3)

where £ is the sending end and k+/ is the receiving end. Voltages of
a transmission line and real power losses in the line can be calculated
from (4), (5), and (6) respectively:

Vel =il = 2R, B+ X,00) + (R + XL,

2

4)
Posstiiin = Rk|]k|2 Q)
Qloss(k,kﬂ) = Xk|]1‘|2 (6)

The total system loss is calculated by summing all line losses in the
system as shown in (7):

n—1
Prigss = szass(k,k+1)
k=1 @)
Py, Qx Py, Qi
@ R +JX
Vi Vi
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Fig. 1. Simple radial distribution system.

B. Objective Functions

The main aim of the objective function of the optimal capacitor
placement problem is to minimize the total cost per year by reducing
the real power losses and the cost of installing capacitors subjected
to voltage and reactive power limits. This paper uses the weighted
sum method to evaluate the effectiveness of the proposed approach to
find the benefits of optimal allocation and rating of shunt capacitors.
The weighted sum method allows the multi-objective to be cast as a
single-objective mathematical optimization problem resulting in only
one solution, in addition to its lower computational cost (CPU-time).
These advantages are more proper for real world problems. Hence, the
multi-objective functions have been performed by using the following
mathematical statement:

f =Min(F,+F,) ®)

where F', and F), are described as: F, =min (P, ), F,= min (Cost)

where the cost function is defined as:

! "
Cost=K .2 T,P,+3 K0,
k=1

J=1

)
C. Constraint Conditions

The objective function is subjected to:

1) Voltage Constraint

The buses voltages are the inequality constraints. The bus voltage
magnitude of each bus must be maintained within the following range:

Vmin < |Vk| = Vmax (10)

where ¥, and V  are the maximum and minimum values of bus
(k) voltages. The lower and upper values are taken as 0.9 and 1.05 Pu,
respectively.

2) Total Reactive Power Constraint

The total injected reactive power, which represents the equality
constraints must be limited by:

ch < ZQLk
= (11)
sts + Qcap = Qd + QTZOA‘S (12)

Power-flow equations, equality restrictions (2) and (3), can be
satisfied during the process of power-flow calculation. In the encoding
period, the inequality restrictions (10)—(12) can be satisfied through
adding penalty function into the objective function in such a way that it
penalizes any violation of the constraints. Consequently, the constrained
optimization problem is then converted into an unconstrained form.

III. OVERVIEW OF MSA

The moth swarm algorithm has been presented in 2017 by Al-
Attar et. al [27]. It is inspired from the orientation of moths towards
moonlight. The available solution of any optimization problem using
MSA is performed by the light source position, and its fitness is the
luminescence intensity of the light source. Furthermore, the proposed
method consists of three main groups, the first one is called pathfinders
which is considered a small group of moths (np) over the available
space of the optimization. The main target of this group is to guide
the locomotion of the main swarm by discriminating the best positions
as light sources. Prospectors group is the second one which have a
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tendency to expatiate in a non-uniform spiral path within the section
of the light sources determined by the pathfinders. The last one is the
onlookers, this group of moths move directly to the global solution
which has been acquired by the prospectors.

The steps of the MSA technique are discussed as follows:

A. Initialization

Initially, the positions of moths are randomly created for dimensional
(d) and population number (n) as seen in (13).

x; =rand[0,1].(x7" —x[") + x7"Vi e {.,2,...n},

jell2,..d} (13)

where, x;.nax and x;.mn are the upper and lower limits, respectively.

Afterwards, the type of each moth is selected based on the
determined fitness. Consequently, the best moths are elected as light
sources and the following groups of moths (i.e., the best and worse)
will be dealing as prospectors and onlookers, respectively.

B. Reconnaissance Phase

The moths may be concentrated in the regions, which seem to be a
good performance. Therefore, the swarm quality for reconnaissance
may be decreased during the process of the optimization and this
process may lead to a stagnation case. To avoid the early convergence
and enhance the solution diversity, a part of the swarm is compelled to
determine the less congested area. The moths, which perform this role,
update their positions by interacting with each other.

A new strategy for the diversity of solutions is presented to choose
the crossover points. Firstly, the normalized dispersal degree Gj- of the
individuals is measured as follows:

1 n -
7 Zizpl (xl’/ - xl)z
P
* (14)
ra 1 n
r pot
i = 72#1 Xy
p

Then, the coefficient of variation, which measures the relative
dispersion, is calculated as:

o1 d t
==y o
defl J (15)

Any element of the pathfinder moths exposed to a low dispersal
degree will be taken in the group of crossover points C,, as described
below: jec, i o)<y’

where,

To complete the full trail solution, each host vector (i.e., pathfinder
solution) will update the position through the crossover processes by
integrating the modified variables of the sub-trail solution into the
analogical variables. The full trial solution V', can be defined as:

; . .
Vi lf JEC
I/[;/' _{ ’ Py

X, it Jec,

(16)
C. Lévy Flights

Lévy flights/motions are random processes based on a-stable
distribution with ability to travel over large scale distances using
different size of steps. Lévy a-stable distribution strongly linked with
heavy-tailed probability density function (PDF), fractal statistics, and
anomalous diffusion. The PDF of the individual jumps A(q) ~ ‘q e
decaying at large generated variable g. The stability/tail index

o € [0, 2] or so called the characteristic exponent describes the shape
of the distribution taper [27]. There are a few special cases that have
a close form for the density of the general Lévy distribution, and can
be defined as:

* Gaussian or normal distribution, ¢ ~ N(x,o2) if density is:

1 _ 2
S@)= eXp(—(q 'Lzl) ) —w<g<®
\/ZEO_G 205 (17)
 Cauchy distribution, ¢ = cauchy(o, p) if density is:
1
S(@) = —o<g <o
7(o? +(g—m)?) (18)

» Asimple version of Lévy distribution, g = Le'vy(o, 1) if density is:

=L ! — 0 ©
/@ \/;(q—ﬂ)”e)(p( 2(61-#)) HsaE (19)

Mantegna’s algorithm [27] is used to emulate the a-stable distribution
by generating random samples , that have the same behavior of the
Lévy-flights, as follows:

u

L, = step® Levy(a) = 0.01‘ ‘l/a
Yy

(20)

where, step is the scaling size related to the scales of the

interest problem, @ is the entrywise multiplications, u = N(0,0.)

and y=N(0,0,) are two normal stochastic distributions with
r(l+a)sinza/2

T {r((na)/zazw*”“)} ,o,=1

D. Difference Vectors Lévy-Mutation

For nc € cp crossover operations points, the proposed algorithm
creates the sub-trial vector Vp= [Vpl, Vp2,...,Vpn/ by perturbing the
selected components of the host vector x,= [xs1, Xp2,...,Xpaf, With
relatedcomponentsinthedonorvectors(e.g. x,;= [xri1, Xri2, ..., Xr1n] )-
The Mutation strategy may be used for synthesis such a sub-trail
vector, as follows:

[N —

V; =X, +L[p1(x£2 _xl{3)+L[p2( Xpy = Xps5)

1 2 3 4 5
Vro#ri#zr #r° #r ;tpe{l,Z,...,np} @1
where, L, and L,, are two independent identical variables used as
the mutation scaling factor and generated by a heavy tail Lévy-flights
using (Lp~random(nc )O Levy(a)). The set of mutually indices (r1, 2,
r3, r4, r5, and p) are exclusively selected from the pathfinder solutions.

E. Selection Strategy

The fitness value of the full trail solution is determined after finishing
the last procedure, and then it is compared with its corresponding host
solution. The suitable solutions are selected to continue for the next
generation, which is used for minimization problems as follows:

= P SO
vy i S)<A)

(22)

The probability P, which is proportional to luminescence intensity
ﬁrp can be calculated from (23) and fnp is estimated from the objective
function value fp with minimization problems from (24).
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fit,
Pr=n o
Zp:lﬁtﬂ (23)
1
ﬁtp: 1+fp for prO
1+|f,|  for  f,<0

24

F Transverse Orientation

The prospector moths are the next best luminescence intensity
group of moths. The number of prospectors n, is proposed to decrease
through all iterations 7 as follows:

n,= round((n —-n,)x(1 —t)j
| d (25)

After the pathfinders have finished their search, the information
about luminescence intensity is shared with prospectors, which attempt
to update its positions in order to discover new light sources. Each
prospector moth X, is soared into the logarithmic spiral path as shown
in Fig. 2(a) to make a deep search around the artificial light source X,
which is chosen on the basis of the probability P, using (23). The new
position of ith prospector moth can be expressed mathematically as
follows:

1+l
X =

l

Vie {np +Ln, +2,...,nf}

x! —x;‘.eﬁ.cos2ﬁ€+ x; V pe {1,2,...,np}

1

(26)

where, 0€([r,1] is a random number to define the spiral shape and
r=-1-tT. Although the same formula has been used in Moth-flame
Optimization (MFO) [27] algorithm, the MSA is dealing with each
variable as an integrated unit. In the MSA model, the moths are changed
dynamically. Therefore, any prospector moth uplifts to become
pathfinder moth if it discovers a solution with luminescence more than
the existing light sources. That means the new lighting sources and
moonlight will be presented at the end of this stage.

G. Empyreal Navigation

The diminishing of the number of prospectors during the
optimization process increases the onlookers number (no= n-nf-np).
This may lead to an increase in the speed of the convergence rate of
MSA towards the global solution. The onlookers are the moths that
have the lowest luminescent sources in the swarm. Their main aim for
traveling directly to the moon is the most shining solution as shown in
Fig. 2(b). In the MSA, the onlookers are forced to search for the hot
spots of the prospectors effectively. These onlookers are divided into
the two following parts:

The first part, with the size of n, = round(n,/2), walks according
to Gaussian distributions using (5). The new onlooker moth in this sub-
group xit "1 moves with series steps of Gaussian walks, which can be
described as follows:

+1 it t
X, =x, +& + [52 x best,

Vie {1,2,..., nG}

— &y X X| ]
(27)

~ random(size(d) @ N| (best >< (x| —best! )j

(28)

Where, ¢, is a random number generated from Gaussian distribution,

¢, and ¢, are random samples drawn from a uniform distribution within
the interval [0,1], beslg is the global best solution (moonlight) obtained
in the transverse orientation phase. Based on many optimization
algorithms, there is a memory to transfer information from the current
generation to the next generation. However, the moths may fall into the
fire in the real world due to the lack of an evolutionary memory. The
performance of moths is intensely affected by the short-term memory
and the associative learning [27]. The associative learning has an
important role in connection among moths. Therefore, the second part
of onlooker moths 7,4 =n, —ng will sweep towards the moon light
depending on the associative learning operators with an instantaneous
memory to imitate the actual behavior of moths in nature. The
instantaneous memory is initialized from the continuous uniform of
Gaussian distribution on the range from x; —xmm to x X" The
updating equation of this type can be completed in form:

]+a——on

n/,} (29)

xt+1 _ x +O 001 G[x mm, max __

(best, —x!)+2g/G.r,.(best, —x)Vie{l2,.,

where, , and r, are random number within the interval [0, 1], 2¢/G
is the soc1a1 factor 1-g/G is the cognitive factor and bestp is a light
source selected from the modified swarm based on the probability p,. It
is worth mentioning that the constraints are checked and satisfied after
each fitness evaluation in the flowchart of MSA (see Fig. 3).

Fig. 2 Orientation behavior of moth swarm: (a) Moth flying in a spiral path
into nearby light source (b) Moth flying in a fixed angle relative to moonlight.

IV. NUMERICAL EXPERIMENTS OF MSA

In order to tune the parameters of the proposed MSA and evaluate
its performance in terms of exploitation, exploration, convergence
behavior and solution quality, a set of 23 benchmark functions
commonly used in literature were tested. The details of these functions
are given in [29]. In this section, a swarm of 50 moth with seven
pathfinders has been employed over 50 independent runs with a 1000
maximum number of function evaluations for f, — f,, and 500 iteration
for f,, — f,;- MSA is compared with four metaheuristics algorithms,
including MPSO [30], Modified Differential Evolution (MDE) [31]
approach, MFO [32], and Flower pollination algorithm (FPA) [5],
respectively. To maintain comparison consistency, these algorithms are
tested with 50-population size under the same conditions and using
their standard control-parameters setting as given in Table I. The mean
and the standard deviation are used in order to assess the robustness of
the algorithms under study.

A. Determination Control Parameters in MSA

In nature, light can be dangerous and a large number of artificial
lights will decrease the flight activity of moths. A statistical study
has been used to specify the required number of pathfinders, and the
obtained results for a swarm of 50 moths at different values of n_are
illustrated at Table II appendix (A). Judging from Table II, it can be
seen that, the best required number of pathfinders is approximately
13% of the total populations.
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Fig. 3. Flowchart of the proposed MSA.
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B. Exploitation Analysis Based on Unimodal Benchmark

Functions

The first set of experiments aimed to benchmark the exploitation
ability of the proposed MSA. The unimodal function (f, — f), are
designed to compare the convergence rate of the search algorithms.
In the MSA, pathfinders and prospectors primarily carry out the
exploration (global search). The mean and the standard deviation
(noted as StDev) are performed as reported in Table III in appendix
A. According to the overall rank, although the MSA and MPSO are
satisfied the condition of convergence rate and significantly better than
other metaheuristic algorithms, the MSA is stronger than MPSO in
fine tuning around the global optimum due to its better global search
ability. On the other hand, MFO is mainly searched in a small local
neighborhood. In addition, the widespread step of the FPA is not a
guarantee for obtaining the advanced order.

C. Exploration Analysis Based on Multimodal Benchmark
Functions

A test suite has been employed to compare MSA performance with
other algorithms at the high-dimensional multimodal functions (f, —
/,;), and the final results are summarized in Table IV in appendix (A). It
is obvious that, MSA and MDE are clearly escaped from the poor local
optimum, and the GMSA approaches the neighborhood of the global
optimum at f, and hits the exact optimum every time at (f, - f,,). On the
other hand, the Lévy-flights updating strategy of FPA maintains a small
protection against the premature convergence; whereas the MFO has a
low probability to make such a long jumps, which may be the reason
for its poor average best fitness.

The experimental study for the low-dimensional multimodal
functions (f,,—f,,), givenin Table V appendix (A). , shows that the MSA
and MDE have the best results compared to the rest of the algorithms,
while MPSO has difficulties with functions of this kind. Although f,
is an easy problem, the GMSA has failed to find the global optimum
solution as other algorithms. In the three Shekel functions (f,, — f,.),
FPA obtains a better average performance than the other optimizers.
In sum, the algorithms achieve a similar performance ranking for both
multimodal categories, where MSA is ranked 1st followed by MDE,
MPSO, MFO, FPA, respectively. To validate the comparative study,
the pairwise Wilcoxon’s rank-sum test, a nonparametric statistical test,
is carried out at 0.05 significance level to judge whether the results
of the GMSA differ from the other algorithms in a statistical method.
The p-values of the Wilcoxon’s rank-sum, based on outcomes of Tables
II-V in appendix (A), are displayed in Table VI appendix (A). In this
table, the -values that are less than 0.05 proved a sufficient evidence
against the null hypothesis.

In order to verify the solution quality and further assess the
robustness of the proposed algorithms, the graphical analysis of the
Analysis of Variance (ANOVA) test for functions £, f;, and f,, are used,
as depicted in Fig. 4. The boxplots confirm that MSA achieves, on
average, superiority in comparison with the rest of the algorithms.

D. Analysis of the Convergence Behavior

The algorithms under study have been executed on 50 independent
runs in order to assess their robustness through the mean and the
standard deviation. To investigate the convergence behavior of
the best evolution curves for the proposed methods are seen in Fig.
5. Generally, MSA and MPSO have smooth curves with a faster
convergence rate more than the other algorithms. Whereas, the MPSO
suffers from a premature convergence, caused by particles stagnating
around local optima, when handling nonlinear functions. MFO has
linear characteristics, meanwhile suffers from excessively slow rate as
in f10. In other hand, the MDE and FPA have non-smooth convergence
characteristics. We can say that, the developed optimization algorithm

is a deep-PSO, fast-MFO and linear convergence of MDE and FPA.
Seven benchmark functions are used to assess the convergence speed
of the MSA against the four techniques under study and the well-
known PSO [33], group search optimizer (GSO) [33] and modified
group search optimizer (MGSO) [34] as shown in Table VII appendix
(A). It is clear that MFO gives less computational time cost than the
other algorithms. This is because MFO owns one updating equation
even though it applies to each component of variables. Although, the
MSA contains a number of strategies, but each of them apply to a
certain group of the population. Except the small group pathfinders, all
moths are dealing with each variable as an integrated unit. In addition,
no longer need to store the velocities and personal best solution for
each onlooker moth, as in the basic PSO. These properties made the
MSA give acceptable computational cost results. The MPSO has a
higher cpu-time than the other methods, which may be attributed for
the application of the two modifications on all particles. It is important
to point out that, the MPSO and MSA have the highest convergence
speed and therefore the quickest answer to the problem at hand.

Fig. 4. ANOVA tests for different algorithms.
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Fig. 5. Comparison of convergence curves of GMSA and literature algorithms
obtained in some of the benchmark problems.

V. RESULTS AND DI1SCUSSION OF RADIAL DISTRIBUTION SYSTEM

To evaluate the efficiency of the proposed MSA method against
power loss and energy cost minimization, The IEEE radial distribution
systems of 33 and 69-bus have been applied for this simulation. The
MATLARB is used to implement the MSA technique for the optimal
capacitor placement problem.

This study includes the annual cost of real power loss and the
total capacitor banks. The obtained results are compared with other
conventional algorithms over 50 independent runs described as follows.

A. IEEE 33-Bus Test System

To evaluate the impact of the proposed MSA on the medium scale
of distribution system, the IEEE 33-bus system has been tested. Fig.
6 shows the single line diagram of this system. The system rated
voltage is 12.66 kV. The load and line data are given in [13]. Load
flow calculation is run before compensation, the minimum bus voltage
is registered as 0.9036 p.u at bus 18 and the total active power loss is
210.98 kW with the annual energy losses cost of 35442.96 $. Using the
proposed MSA method, only three capacitors are allocated at optimal
locations at buses 12, 24 and 33 with the size 0f 450, 600 and 900 kVAR,
respectively. As a result, the real power loss is diminished to 137.227
kW as 35.02% of the base case. Furthermore, as seen from Table VIII,
MSA reduced the total losses by 34.55 kW compared with Analytical
1P [23], 14.52 kW compared with SA [20], 6.81 kW compared with GA
[9] and 4.01 kW compared with FRCGA [26]. Also, The annual energy
cost is diminished from 35442.96$ to 23446.98$ with a net saving of
33.85%, which is the best percentage value compared with 30.29% of
GA [9], 31.66% of FRCGA [26], 26.94% of SA [20] and 17.17% of
analytical IP [23] as seen in Table VIII in Appendix (A).

SUBSTATION
132/12.66 KV

Fig. 6. Single line diagram of IEEE 33-bus RDN [13].
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Fig. 7. System Voltage Profile for 33-bus system.

In addition, the system voltage profile is improved and the worst
bus voltage is enhanced to 0.9329 PU as shown in Fig. 7. These results
have validated the performance and effectiveness of the proposed MSA
method. Furthermore, the minimization of active power loss and total
cost is stabilized with the fast and smooth convergence as shown in
Figs. 8 and 9. It is shown that the proposed MSA is more effective than
the conventional algorithms under the medium scale of distribution
system.

Fig. 8. Power loss convergence of 33-bus system with MSA.

Fig. 9. Total cost convergence of 33-bus system with MSA.

B. IEEFE 69-Bus Test System

The proposed MSA is further applied on the IEEE 69-bus
system which consists of 69 buses and 68 branches as shown in
Fig. 10. The rated line voltage is 12.66 kV and total system load is
(1.896MW+j1.347MVAR). The details load and line data are reported
in [13]. After running the power flow calculation and before placing
the capacitors banks in the RDN, the power loss is obtained at
224.975 kW with the lowest bus voltage at bus 65 is (0.9092 p.u.) and
the total energy losses cost is 37800 $ per year. When applying the
proposed method on this RDN, the best active power loss reduction
is at 145.404 kW which increased the percentage of loss reduction to
35.37%. This result shows the best value when it is compared with
30.37% of GA [8], 32.22% of PSO [6], 34.66% of DSA [17], 34.95%
of TLBO [9], 34.23% of CSA [11], 35.14% of GSA [12] and 35.2% of
FPA [5]. This result is considered as the greatest value compared with
other algorithms in Table IX Appendix (A). It is found that only three
capacitor banks with optimum ratings of 450, 150 and 1200 kVAR
have been installed at buses 12, 21 and 61, respectively. Furthermore,
the MSA has minimized the total cost per year to 24820.84$ instead
of 378008 before compensation. The annual net saving is increased to
34.34% as shown in Table IX in appendix (A). This table displays the
statistical performance of the proposed MSA with the best, worst and
average values of the total cost for 50 independent runs. Moreover,
Fig. 11 confirms the effectivity of the proposed technique by showing
the improvement in system voltages. The minimum voltage has
been improved to 0.9324 p.u. which is compatible with the voltage
constrains. In addition, the fast and effective response of the MSA
appears in the convergence curves of total real power loss and total
costin Fig. 12 and 13. The best result obtained from the 50 independent
runs for the radial distribution systems were shown in Fig. 8, 9, 12,
and 13.

2
3
a
x
S
=
7]

Fig. 10. Single line diagram of IEEE 69-bus RDN [13].

Fig. 11. System Voltage Profile for 69-bus system.
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Fig. 12. Power loss convergence rate of 69-bus system with MSA.

Fig. 13. Total cost convergence rate of 69-bus system.

V1. RESULTS FOR RING DISTRIBUTION SYSTEMS

In this section, the proposed MSA optimization method is tested on
the complex power systems known as the ring distribution systems,
which are more sensitive to variations and uncertainties. Moreover, the
ring main system is considered more complex than the radial system
in terms of load flow problems and improper coordination problems.
The ring distribution systems are built by modifying the standard [IEEE
33 and 69-bus.

A. IEEE 33-Bus System

The radial IEEE 33-bus system is reconfigured to the ring main
system as shown in Fig. 14. It consists of sectionalized switches from 1
to 32 and tie-switches from 33 to 37. In case of converting the system
from radial to ring by using tie-lines (33 to 37), the power loss reduced
to 202.68 kW and minimum bus voltage is 0.913 p.u. With optimal
reconfiguration (7-11-14-32-37), it can reduce the active power loss
by 41.2% and improve the minimum voltage to 0.938 p.u. On the
other hand, applying the MSA method on the ring main system for
determining the optimal locations and sizes of capacitor banks needs
to minimize the power loss with optimal reconfiguration. The result-
based MSA shows a good performance as only three locations have
been selected at buses 6, 24 and 33 with total reactive power of 1500
kVAR. Furthermore, the total active power loss is reduced with 69.1%
from the base case which is better than the other methods as seen in
Table X appendix (A). This table summarizes a detail comparison
between the MSA, BGSA [35], HSFLA [36], PSO [36], IPSO [36]
and ACO [36] for active power loss, minimum voltage and reduction
percentage. Moreover, for all bus voltages-based the MSA method
are maintained within desirable values and higher than 0.964 p.u as

shown in Fig. 15. In addition, Fig. 16 shows the effective performance
of MSA as total power loss converges smoothly to its minimum values
without fluctuations.

22
s
Eg8
g2
R
2g
28
2%

Fig.14. Single line diagram of IEEE 33-bus Ring system (Tie switches = 21-8;
9-15; 12-22; 18-33; 25-29).

Fig. 15. Bus Voltage Profile of 33-bus Ring system.

Fig. 16. convergence rate of 33-bus ring system with MSA.

B. IEEE 69-Bus System

The MSA method is further implemented on the large IEEE 69-bus
test system after converted to a ring main system as shown in Fig. 17.
It consists of sectionalized switches from 1 to 68 (normally closed)
and tie-switches from 69 to 73 (normally open). In the base case with
tie switches (69-70-71-72-73), the total power loss and the minimum
bus voltage are at 224.97 kW and 0.909 p.u, respectively. In case of
optimal reconfiguration, it can reduce the active power loss by 59.17%
and increase the minimum bus voltage to 0.9877 p.u. as shown in Fig.
18. On the other hand, when installing capacitors banks in the ring
main system and implementing the MSA technique for optimizing
their locations and sizes gives the great results. Only three locations at
buses 11, 50 and 61 have been selected to install capacitors with total
reactive power 1500 kVAR. In addition, the total active power loss is
diminished by 93.98% from the base case. This result is considered the
best comparing with other techniques such as BFO [37], TSA [38], BA
[39] and WOA [40] as seen in Table XI in appendix (A). Moreover, the
minimum bus voltage increased to 0.99 p.u, which is considered a very
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good value as seen in Fig. 18. Furthermore, the effectiveness of the
proposed MSA is seen in Fig. 19, which shows the fast convergence
of the total active power loss. The best results obtained from the 50
independent runs for the ring distribution systems were shown in Fig.
16 and 19.

3
3
=
Bl
k4
@

Fig. 17. Single line diagram of IEEE 69-bus Ring system (Tie switches = 11-
43; 13-21; 15-46; 50-59; 27-65).

Fig. 18. Bus Voltage Profile of 69-bus Ring system.

Fig. 19. Convergence rate of 69-bus ring system with MSA.

VII.CONCLUSION

In this article, a novel MSA paradigm has been presented with two
new optimization operators of adaptive crossover based on population
diversity and associative learning mechanism with immediate memory,
which may be appropriate to hybrid with other algorithms in the future.
Twenty-three commonly used benchmarks under different statistical
metrics are employed to verify the effectiveness of proper hybridization
in terms of convergence, local optima avoidance, robustness,
computational cost, exploration, and exploitation. From the obtained
results, the final algorithm can be considered a hybrid of algorithms
of the PSO, DE, MFO, and PFA in line with the natural characteristics
of the moth swarm, and suitable for solving the complex problems.
The comparative study with several metaheuristic search techniques,
confirms the primacy of the proposed paradigm and its potential to find
accurate, fast and robustness solutions.

MSA approach has been successfully applied on the small, medium
and large scale electrical distribution systems to solve the problem of
capacitors allocation for minimizing the real power losses and annual
energy cost, which is considered as an attractive economic issue. MSA
superiority is clarified by testing it on radial/ring IEEE distribution
networks (33 and 69-bus systems). Furthermore, the proposed MSA
can improve the voltage profile at each bus in the systems. Moreover,
overall numerical results obtained from the proposed MSA method
such as minimum voltage, active power loss, power loss cost, capacitor
cost, annual energy cost, net saving cost and CPU time have been
compared with other algorithms. The MSA method presents a desirable
and superior performance with stable convergence against the other
techniques. The applications of the proposed MSA method can be
considered as the most recent optimization algorithms for the network
reconfiguration and dealing with the protection coordination system in
presence of capacitors banks and distribution generation during grid
faults are the future scope for this work.

APPENDIX (A)

NOMENCLATURE
P, Real power flow from bus k
0, Reactive power flow from bus k
P, Real power load connected at bus k
0, Reactive power load connected at bus k
P Real power load connected at bus k+1
(O Reactive power load connected at bus k+1
R, Resistance connected between buses k and k+1
X, Reactance connected between buses k and k+1
Vv, Voltage at bus k
V., Voltage at bus k+1
K, The annual cost co-efficient per unit of power losses [13]
K, Cost co-efficient in $/KVAR (3) [17]
el Random samples drawn from Gaussian stochastic distribution
Q.. Reactive power compensation
min Minimum bus voltage value
. Maximum bus voltage value
o Tap setting of transformer
, Number of pathfinders moths
u Variation coefficient
o; Dispersal degree
bestg The global best solution
r,T, Random number within the interval [0, 1]
P, The real power loss during jth load level
n The number of candidate buses
0. The size of the shunt capacitor
e & Random numbers distributed uniformly within the interval

” [0,1]
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TABLE VI. P-VALUES CALCULATED FOR WILCOXON’S RANK-SUM TEST (P>=0.05 HAVE BEEN UNDERLINED)

MPSO MDE MFO FPA

F1 0.0742443 0.0418114 0.01228 6.263E-010
F2 0.0044408 0.041814 2.0318E-008 5.7225E-009
F3 4.1048E-005 6.263E-010 6.263E-010 6.263E-010
F4 5.5847E-005 2.9812E-007 6.263E-010 1.6501E-008
F5 5.7467E-009 7.0497E-010 7.0497E-010 6.2928E-010
F6 0.0742443 0.041814 0.021081 6.263E-010
F7 0.00048083 0.00048083 4.7908E-005 0.00048083
F8 1.6501E-008 1.6501E-008 1.6501E-008 1.6501E-008
F9 7.0165E-010 6.263E-010 6.263E-010 6.263E-010
F10 0.0022103 0.041814 3.6027E-007 1.6501E-008
F11 0.0081071 0.041814 3.0022E-005 1.6501E-008
F12 0.031296 0.041819 0.0003429 1.6567E-008
F13 0.03577 0.041814 0.00044952 7.0165E-010
F14  4.4603E-007 4.448E-007 8.304E-007 3.2786E-007
F15 0.0026421 0.00048083 0.00048045 0.00048083
F16 0.0011031 0.0011031 0.0011031 0.015781

F17  8.4451E-006 8.4451E-006 8.4451E-006 4.9194E-006
F18  2.7033E-008 6.9137E-009 2.4213E-008 1.6501E-008
F19  8.4451E-006 8.4451E-006 8.4451E-006 0.00048083
F20 0.00056673 0.0013295 0.0018718 0.0031498

F21 8.3938E-006 2.7552E-006 3.1691E-005 4.9194E-006
F22  6.4387E-005 2.885E-006 3.4065E-006 4.9194E-006
F23 5.8609E-006 1.2815E-007 3.613E-008 3.2786E-007

TABLE VII. CoMPARISONS OF AVERAGE CPU TIME (S) FOR SOME OF BENCHMARK FUNCTIONS

MSA MPSO MDE MFO FPA MGSO[34]* PSO[33]° GSO[33]°

F1 4.8359 10.6167 8.1457 3.2555 4.6371 8.98 36.3 27.6

F5 4.9062 10.6391 8.8892 3.8525 53113 18.4 37.6 27.8

F7 5.8201 10.4509 10.4318 4.3053 5.4247 19.7 41.4 31.4

F8 4.9735 9.9465 8.3939 3.3662 4.8413 20.5 43.0 32.7

Fo 5.0244 10.0350 8.3013 3.4761 4.4404 10.5 71.4 50.1

F10 5.5109 11.0692 9.0345 4.0075 4.9402 12.4 44.1 344

F11 5.2731 10.5239 9.0721 3.7285 4.7920 34.8 45.4 35.9

a The experiments were carried out on a PC with a 2.60-GHz Intel Processor and 2.0-GB RAM.
b The experiments were carried out on a PC with a 1.80-GHz Intel Processor and 1.0-GB RAM.
TABLE VIII. CompaRrISON RESULTS USING DIFFERENT OPTIMIZATION TECHNIQUES FOR (33-BUs SYSTEM)
Optimal location . Worst Mean
Methods (P??) (Bus no.) P (KW) Sost(g)f ijsic(lg;r Total Total cost Bcesz t"l;(;t)a ! —rrggilctcizilt Tifnf;lzs)
’ Optimal size (kVAR) loss cost ($) $)
Base Case 0.903 - 210.98 35442.9 - -
MSA 0.932 12(450),24(600),30(900) 137.23 23054.1 392.85 23627 23534.6 23446.98 33.85% 54
GA [9] NA 7(850), 29(25), 30(900) 144.04 24198.7 507.15 NA NA 24705.87 30.29% NA
28(25), 6(475), 29(300), .

FRCGA [21] NA 8(175), 30(400), 9(350) 141.24 23728.3 492.86 NA NA 24221.18 31.66% NA
Aﬁfllyztgclal 0950  9(450), 29(800), 30(900)  171.78  28859.0  499.35 NA NA 29358.39 17.17% NA
SA [20] 0.959  10(450), 30(350), 14(900)  151.75 25494 401.052 NA NA 25895.05 26.94% NA
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TABLE IX .COMPARISON RESULTS USING DIFFERENT OPTIMIZATION TECHNIQUES FOR (69-BUs SYSTEM)

Optimal location . Worst % Total
Methods V. (p.u) (bus no.) Ploss (kW) P(l:(?ssst ?ﬂ{) c:c]::tcgg;r Total cost Mfs; "{;)tal Bces; tﬂlg;;i ! cost Ti?n}:is)
Optimal size (kVAR) [©)] reduction
Base Case  0.909 - 224.98 37800 - -
MSA 0.932 21(150), 12 (450),61(1200) 145.41 2442799  392.85 24987.9 24908.2 24820.8 343 11.42
Fuzzy-GA
[17] 0.936 59(100), 61(700), 64(800) 156.62 26312.16  424.8 NA NA 26736.9 29.2 NA
PSO [6] NA 46(241), 47(365), 50(1015) 152.48 25616.64  433.99 NA NA 26050.6 31.1 NA
57(150), 58 (50), 61(1000),

DE [18] 0.931 60(150), 59(100) 151.38 25431.84  316.1 NA NA 25747.9 31.8 NA
TLBO [10]  0.932 22(300), 61(1050), 62(300) 146.35 24586.8 446.4 NA NA 25033.2 33.7 15.76
CSA[12] NA 21(250), 62(1200) 147.95 24855.6 291.5 NA NA 25147.1 33.4 NA
GSA[13] 0.951 26(150), 13(150), 15(1050) 145.9 24511.2 451.5 NA NA 24962.7 339 NA

TABLE X. ComparIsoN ResuLTs USING DIFFERENT OPTIMIZATION TECHNIQUES FOR 33-BUS RING SYSTEM

Optimal location (bus no.)

. o . . .
Techniques V. (p.u) Ploss (kW) % Loss reduction Optimal size (KVAR) Tie switches
Base Case 0913 202.68 - - 33-34-35-36-37

MSA 0.9642 62.68 69.1 6(150), 24(450),30(900) 7,11,14,32,37
PSO [36] 0.9635 95.38 52.93 9(300), 10(300), 31(300), 6(600), 7-10-14-36-37
29(600)
5(300), 13(300), 32 (300), hg.22.24.
IPSO [36] 0.9656 98.83 51.23 28(1200) 11-28-33-34-36
11(300), 24(300), 32(300),

IBPSO [36] 0.9585 93.06 54.08 6(600), 29(600), 7-9-14-32-37
ACO [36] 0.9656 95.79 52.73 20(600), 28(450), 29(600) 7-9-14-32-37
BGSA [35] 0.956 113.56 43.97 5(NA), 27(NA), 28(NA) 10-14-28-32-37
HSFLA [36] 0.9585 92.58 54.32 300(2-4-10-11-18-24-28-29-30) 7-11-14-32-37

TABLE XI. CoMPARISON RESULTS USING DIFFERENT OPTIMIZATION TECHNIQUES FOR 69-BUS RING SYSTEM

Optimal location (bus no.)

Tie switches

Techniques V . (p.u) P, (kW) % Loss reduction . .
m o Optimal size (kVAR) (bus no.)
Base Case 0.9092 224.97 - - 69-70-71-72-73
MSA 0.990 13.534 93.98 11(450), 50(150),61(900) 14-45-52-69-70
BFO [37] 0.9534 33.63 85.05 11(300), 49(450), 61(900) 4-56-61-69-70
24(100), 45(200), 49(300),
TSA [38] 0.956 108.94 51.58 61(400) 14-20-52-61
BA[39] 0.9561 88.413 60.7 27(1350), 37(2250), 62(1200) 11-58-69-70-73
WOA [40] 0.99 66.74 70.3 50(350), 61(1050), 64(390) 13-18-56-61-69
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