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Abstract — This paper introduces an uncertainty model for 
the quantitatively estimate precipitation using weather radars. 
The model considers various key aspects associated to radar 
calibration, attenuation, and the tradeoff between accuracy 
and radar coverage. An S-band-radar case study is presented to 
illustrate particular fractional-uncertainty calculations obtained 
to adjust various typical radar-calibration elements such as 
antenna, transmitter, receiver, and some other general elements 
included in the radar equation. This paper is based in “Guide to 
the expression of Uncertainty in measurement” [1] and the results 
show that the fractional uncertainty calculated by the model was 
40 % for the reflectivity and 30% for the precipitation using the 
Marshall Palmer Z-R relationship.

Keywords — Quantitative Precipitation Estimation, Radar 
Measurements, Uncertainty, Weather Radar.

I.	 Introduction

Most methods to quantitatively estimate precipitation often fail 
to provide information about the type of uncertainty associated 

to the corresponding measurement technique; therefore it seems 
compelling to quantify the technique-associated uncertainty together 
with the actual estimation results [2]. 

The general purpose of measuring is to determine the actual value of 
a particular magnitude (i.e. the variable), which in our case corresponds 
to precipitation. According to [3], measurement uncertainty is a way to 
express the idea whereby for a magnitude and its given measurement 
there is no unique value but an infinite number of values scattered 
in the vicinity of the suggested result; additionally, these values are 
consistent with all observations, data  and knowledge gathered from the 
physical world, and so can be attributed to the measured magnitudes 
with different degrees of reliability.

Just like other measurement instruments, weather radars rely on 
indirect measurements of actual precipitation; that is, radar receivers 
use antennas to perceive information associated to hydrometeors-echo 
power. This information is subsequently transformed using the radar 
equation (for radar reflectivity) and then, a whole data interpretation 
process begins in order to finally yield a quantitative precipitation 
estimation by means of a given algorithm (or method). From this point 
onwards, there are a considerable number of aspects that affect radar 
measurements and so influence data; therefore such aspects have a 
great impact on the final result (i.e. precipitation levels). These aspects 
include the radar equation itself, calibration issues associated to the 
observation system (antenna, receiver and transmitter), space-time 
variability of the measurements and precipitation’s own micro-physics, 
which cause quantitative precipitation estimations to have considerable 
uncertainty associated to its measuring process.

This paper provides a comprehensive uncertainty analysis intended 
for radar measurement procedures. A particular case study is analyzed 

in order to show quantitative results on the amount of uncertainty in 
the measurement system (the extent of such uncertainty). Section 2 of 
the paper illustrates the methodology applied to obtain the uncertainty 
model and section 3 shows specific case-study results. Conclusions are 
drawn in the final part of the paper. 

II.	 Methodology

The methodology applied in this work involves various stages. There 
is an initial specification of the variable to be measured (i.e. precipitation), 
which is a function of other variables that are previously defined in the 
radar equation. Subsequently, the uncertainty sources associated to this 
process are identified e.g. anomalous propagation, attenuation, ground 
echo, beam partial filling, resolution, beam height, calibration, type of 
rain, DSD variety, evaporation and condensation [4].

A.	 Conceptual Model 
Once the uncertainty sources were identified, a sub-set of 

uncertainty sources was selected, namely those related to radar 
calibration (i.e. antenna, transmitter and receiver), attenuation and the 
distance-sensitive radar resolution loss. Fig. 1 shows the conceptual 
map associated to the model:

Fig, 1. Conceptual Model

B.	 Mathematical Model 
The mathematical uncertainty-measuring model was taken from 

“Guide to the expression of Uncertainty in measurement”. The 
following is a description of the model [1]:

In most cases the value of variable Y (precipitation) is not measured 
directly; instead, such a value results from measuring other N 
magnitudes, namely 1, 2, 3, ….. , using a functional relationship 
as follows:

= (
1, 2, 3, … . . ) 	 (1)  
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In some cases, the best estimation “y” of variable “Y” can be 
obtained from gathering “n” observations, namely:

 

= ̅ =
1

∑ =

=1

1
∑ ( 1, , 2, , 3, , … . . , )

=1

 

	 (2)

The type of uncertainty associated to output estimation “y” is 
referred to as combined typical uncertainty and it is denoted by 
.This particular uncertainty can be determined from the estimated 
typical deviation associated to each input estimate , referred to as 
typical uncertainty and denoted by u( ).

Each of the input estimations   as well as their corresponding 
uncertainty u( ) is obtained from a distribution of possible values of 
each input magnitude  . This probability distribution might be based 
on a series of “n” observations xi,k   taken from the set of observations 

  (type A), or else, the distribution may be assumed (type B). 
The type-A uncertainty assessment is obtained from various 

observations and it is calculated using the following expression:

( ) = √
∑ ( − ̅)

2

=1

( − 1)
  

	 (3)

Where:

̅ =
1
∑

=1

 

For a single estimation xi  associated to an input magnitude xi 

that was not obtained from repeated observations, the corresponding 
associated estimated variance, namely u

2(xi
), or the typical 

uncertainty u(xi
), can be established through scientific decision that is 

based on all the available information about the possible variability of 
. The sort of information gathered may include:

•	 Results from previous measurements.
•	 Experience or general knowledge about the behavior and the 

properties of the specific materials and instruments.
•	 Manufacturing specifications (from suppliers).
•	 Data provided by certified calibrations or other types of certified 

processes
•	 Uncertainty previously assigned to reference values, which may be 

taken from books and manuals.

The values of 2( ) and ( ) that are assessed as stated are 
called Type-B variance and Type-B typical uncertainty, respectively.

The uncertainty of   is not always expressed as a multiple of a 
typical deviation. Instead, it is possible to define a specific interval 
that corresponds to a particular reliability level (e.g. 90%, 95% or 
99%). Unless stated otherwise, it can be assumed that a normal 
distribution has been used to calculate uncertainty; this yields the 
typical uncertainty of    simply by dividing the given uncertainty 
value by the corresponding factor in the normal distribution. Such a 
factor for the three aforementioned reliability levels is 1.64, 1.96 and 
2.58, respectively.

In order to obtain the combined typical uncertainty estimation, 
namely uc(y),  in the case where all input magnitudes are independent, 
we take the positive square root of combined variance uc

2
(y), given by:

2( ) = ∑ [ ]

2

=1

2( ) 

	 (4)

Where f is the function that defines the variable itself as a function 
of variables 

ncti
.

Each u( ) represents a single typical uncertainty that is assessed as 
previously described (either Type-A assessment or Type-B assessment). 
The combined typical uncertainty uc(y)   is a typical deviation that is 
estimated and characterized according to the dispersion of the potential 
reasonable values that can be attributed to variable “Y”.

Partial derivatives (i.e. ∂f/∂xi), also known as sensitivity coefficients, 
describe the variation of output estimation “y” as a function of the 
variations in the input estimation values 1, 2, 3, … .

It is worth mentioning that the previous equation holds only if the 
input magnitudes  are independent or uncorrelated. In case some of 
the values of   are highly correlated, it is essential to consider such 
correlations as follows:

2( ) = ∑ ∑ ( , )

=1=1

= ∑ [ ]

2

2( )

=1

+ 2 ∑ ∑ ( , )

= +1

−1

=1

 

	 (5)

Where  and correspond to the estimations of Xi and Xj; and  

u(  , ) = u(  , ) represents the estimated covariance associated to  

 and . The extent of the correlation between and  is determined 
by the correlation coefficient as follows:

( , ) =
(  , ) 

( ) u( ) 
 

	 (6)

Where ( , )= ( , ) and −1 ≤ ( , )≤ +1. If estimations 

and  are independent, ( , ) = 0, and so a variation in one of 
the estimation values does not imply a variation in the other value.

Fractional uncertainty is defined as the ratio of typical uncertainty to 
the value of the best magnitude estimate, namely:

 =
( )

  

	 (7)

Although (y) can be generally employed as an expression of 
uncertainty for a particular measurement result, it is often necessary (in 
certain commercial, industrial or regulatory applications as well as in 
the fields of health and security) to provide uncertainty measurements 
that clearly define an interval in which most of the distribution 
(reasonably attributed values) of the variable are expected to fall. 

The new expression for uncertainty, which satisfies the interval-
definition requirement, is referred to as expanded uncertainty and is 
denoted by U. Expanded uncertainty (U) is obtained by multiplying the 
combined typical uncertainty (y)by a given coverage factor (k):
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= ( ) 	 (8)

In general, k takes values between 2 and 3. Experience and broad 
knowledge about the way measurement results should be handled may 
facilitate choosing a convenient value for k.

C.	 Uncertainty due to calibrations involving radar, distance 
and attenuation

Taking the radar equation defined by Probert Jones [5] as a starting 
point, a standard uncertainty calculation can be stated as follows: 

=
3 2 ℎ| |2

1024 ln(2) 2 2
 	 (9)

Where : Pr : received power at the radar 

             Ptx : radiated power from the transmitter 
             λ  : wavelength (c/f)
             Z  : Radar-reflectivity factor 
             K :  refraction complex index
             h : spatial pulse length (c τ )
             G: antenna gain 
             r: distance between the target and the radar’s antenna

             ,  : beam angles of the radar 

By solving for reflectivity, and also considering that h=c , θ = ϕ  
and λ =c/f, the following expression is obtained:

=
210 ln(2)

3| |2 2 2  2
2 

	 (10)

The addition of some terms that were not included by Jones, such as 
propagation loss (Lp

), receiving filter loss (LMF
) [6][7] and a radome-

associated loss ((LRD), yields the following expression:

=
210 ln(2)           

2

3| |2   2 2 2
2 2 

	 (11)

For radars that are in normal operation conditions, it is always 
possible to simplify the radar equation since most of the terms are 
constants; thus the following expression can be used:

=
2

 
2

 	 (12)

Where CR is the radar constant, defined by:

=210 ln (2)         
2

3| |2   2 2 2
 	 (13)

By further elaborating on the previous expression, we obtain:

=
210 ln (2)

3| |2   
 	 (14)

Where:

=
210 ln (2)

3| |2   
 
 y =

2
θ

2 

Aspects such as antenna gain, beam angles, frequency accuracy, 
pulse length, and loss estimations (in radome and in the receiving 
filters) constitute some of the many factors that should be considered 
in a radar calibration process [8]. The following is a list of the most 
relevant factors to radar calibration:

TABLE I
FACTORS TO BE CONSIDERED IN UNCERTAINTY MODELS [8].

Elements Factors to be considered in 
calibration

Standard 
uncertainty

Radar Calibration 
Antenna

•	 Gain ( ).
•	 -3dB beam-width angles (θ, ϕ).

•	 Antenna constant CANT = GA

2
θ

2

.
•	 Radome-associated loss ((LRD

).

•	 ( )

•	 (θ, ϕ)

•	 ( ) 

•	 ( ) 

Radar Calibration 
Transmitter

•	 Pulse length (( ).
•	 Frequency (f) and PRF.
•	 Peak power (Ptx

).

•	 (τ) 

•	 (f) 

•	 (Ptx ) 

Radar Calibration 
Receiver:

•	 Gain (G).
•	 Filter-associated loss (LMF

).
•	 (G) 

•	 (LMF )

Attenuation •	 Propagation loss ((Lp
). •	 (Lp )

Resolution Space •	 Coverage range (r). •	 (r)

Physical 
constants:

•	 Wave speed c=2.9978*10^8 m/s.

•	 Dielectric constant |KW
|

2=0.93.

•	 (c)

•	 (KW ) 

Measurements
•	 Reflectivity (Z).
•	 Received power ((Pr

).

•	 (Z) 

•	 (Pr) 

Regarding the various uncertainty sources that appear in the table 
above as independent (except for the existing correlation between the 
transmitting antenna gain and its -3 dB beam angles, which are handled 
together within the antenna constant), the following general expression 
is thus obtained in order to determine the combined uncertainty that 
lies in the corresponding reflectivity (Z) measurement:

2( ) = [ ]

2
2

( )+ [ ]

2
2

( )+ [ ]

2

2
( ) + [ ]

2
2(r)  

	 (15)

Similarly, for : 
2( ) = [ ]

2
2

( )+ [ ]

2
2

( )+ [
τ

]

2
2(τ) 

+ [
f

]
2

2(f)+ [
Ptx

]
2

2(Ptx )+ [
LMF

]
2

2(LMF )   
	 (16)

The following table shows the results in terms of partial derivatives:
TABLE II

PARTIAL DERIVATIVES FOR THE UNCERTAINTY MODEL
=

2
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By using the partial derivatives, the combined uncertainty that 
occurs when measuring reflectivity Z can be expressed as follows:

2( ) = [ ]

2
2

( )+ [2 ]

2

2
( ) + [ ]

2
2

( )+ 

[2 ]

2
2(r) 

	 (17)

The previous expression can be rewritten as follows:

[
( )

]

2

= [
( )

]

2

+ [2
( )

]

2

+ [
( )

]

2

+ [2
( )

]

2

	 (18)

This expression serves to compute the fractional uncertainty 
associated to reflectivity measurements by assuming independence of 
all the variables involved. However, given the direct relation between 
attenuation and the radar’s coverage range, and also assuming a 
corresponding correlation coefficient of 1, the following is obtained:

[
( )

]

2

= [
( )

]

2

+ [2
( )

+ 2
( )

]

2

+  [
( )

]

2

	 (19)

Similarly, for the radar constant, the following is obtained:

2( ) = [−2 ]

2
2

( )+ [−2 ]

2
2

( )+ 

[− ]

2
2(τ) +  [−2 ]

2
2

(f)+ [− ]

2
2

(Ptx )+ 

[ ]

2
2(LMF

)                          
	 (20)

 

[
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]

2
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2 ( )

]

2

+  [
2 ( )

]

2

+  [
(τ)

]

2

+  [
2 (f)

]

2

+  [
(Ptx) 

]
2

+ [
(LMF)

]
2

                             
	 (21)

The uncertainty associated to the antenna constant, which depends 
on the gain and also on the -3db angles, is assumed as a correlated 
uncertainty with a correlation coefficient equal to 1, thus the 
corresponding expression y computed as follows:

=
2

θ
2

 	 (22)

[
( )

]

2

= [
( )

+
( )

]

2

 
	 (23)

Considering that the actual variable of interest is precipitation (R), 
instead of reflectivity (Z),  and also involving the Marshall & Palmer 
Z-R relation together with an algorithm that uses both reflectivity 
and the specific phase differential (for precipitation estimation), the 
following uncertainty expressions are obtained:

= ( , )               = ( ) 	 (24)

2( ) = [ ]

2
2( )+ [ ]

2

2
( )

 
2( ) = [ ]

2
2( )               	 (25)

III.	Case Study

For this particular case study, technical information of radar, located 
in Brisbane-Australia, was considered (see Table II).

TABLE II
CHARACTERISTICS OF RADAR BRISBANE-AUSTRALIA

Frequency Band PPI Latitude Longitude Altitude PRF Range

2,753 GHz S 10 -27,669 152,862 168 999 150 Km

Fractional uncertainty for each of the variables involved in the radar 
equation was assessed as Type-B uncertainty, also considering the 
information provided by suppliers (manufacturers).

In the cases where suppliers provide the maximum error for a 
particular variable, the following expression serves to compute the 
fractional uncertainty of a triangular distribution:

( )
=

ΔX

√6
  

	 (26)

Similarly, for a normal distribution we can use:

( )
=

ΔX

3
   

	 (27)

On the other hand, if suppliers provide relative uncertainty in 
dB, it becomes necessary to calculate the corresponding fractional 
uncertainty as follows [9]:

( )
= 10

( )

10 − 1  

	 (28)

A.	 Antenna
TABLE III

ANTENNA UNCERTAINTY

Parameter Value Error 
±ΔX

Relative 
uncertainty 

u(x) 

Linear 
scale 
Error 
±ΔX

Fractional 
uncertainty 
Triangular  

( )
 

Fractional 
uncertainty 

Normal
( )

 

Gain 45 dB ----- 0.5 dB ---- 0.122 0.122
Angle 1 ° 0.03 ° 0.03 0.012 0.01

B.	 Radome Associated Loss 
Regarding the information provided by antenna suppliers, the 

standard uncertainty due to radome loss is about 0.02 dB.
TABLE IV

RADOME LOSS

Parameter Value Relative 
Uncertainty 

u(x) 

Linear scale Fractional 
uncertainty  

( )
 

Radome Loss 0.5 dB 0.02 dB 0.0046 0.0046

C.	 Pulse length τ
TABLE V

PULSE-LENGTH UNCERTAINTY Τ.

Parameter Value Error ±ΔX

Fractional 
uncertainty 
Triangular 

( )
 

Fractional 
uncertainty 
–Normal 

( )
 

Pulse length τ 0,0002185979 seg 0.000020 seg 0.037 0.03049
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D.	 Frequency
TABLE VI

FREQUENCY UNCERTAINTY

Parameter Value Error ±ΔX Linear 
scale

Fractional 
uncertainty 
Triangular  

( )
 

Fractional 
uncertainty 

Normal  
( )

 

Frequency 2,753 GHz 0.004GHz 0.004 0.0016 0.0013

E.	 Transmitted power
TABLE VII

TRANSMITTED-POWER UNCERTAINTY

Parameter Value
Relative uncertainty 

( ) 

Fractional uncertainty 
( )

 

Power 250 KW 25KW 0.10

F.	 Receiving-filter loss
TABLE VIII

RECEIVING-FILTER LOSS (UNCERTAINTY)

Parameter Value
Relative 

uncertainty 
 ( ) 

Linear 
scale

Fractional 
uncertainty  

( )
 

Receiving-
filter loss 0.02 dB 0.0471 0.0471

Finally, by using equation 21, it is possible to calculate the fractional 
uncertainty associated to that radar constant, as shown in Table IX:

TABLE IX
RADAR-CONSTANT UNCERTAINTY

[
( )

]

2

= [
2 ( )

]

2

+ [
2 ( )

]

2

+ [
(τ)

]

2

+ [
2 (f)

]

2

+ [
(Ptx ) 

]

2

+ [
(LMF )

]

2

 

Fractional Uncertainty Triangular value Normal value
( )

 0.134 0.132

( )
 0.0046 0.0046

(τ)
 0.037 0.030

2 (f)
 0.0016 0.0013

(Ptx ) 
 0.10 0.10

(LMF )
 0.0471 0.0471

( )
 0.2924 0.2879

Using one example of the received power, namely -85 dBm at a 
distance of 10 kilometers, the following uncertainty calculations were 
obtained in terms of reflectivity:

G.	 Received power
TABLE X

RECEIVED-POWER UNCERTAINTY

Parameter Value
Relative 

uncertainty 
( ) 

Fractional 
uncertainty 

( )
 

Potencia -85 dBm 0.7dB 0.17

H.	 Distance to target
TABLE XI

RADAR-DISTANCE UNCERTAINTY

Parameter Value
Relative 

uncertainty 
( ) 

Fractional uncertainty  
( )

 

Distance 10 Km 0.1 km 0.10

I.	 Attenuation loss

The reciprocal value of   ranges from 0 to 1, and, when having 

ideal conditions, this factor is assumed to be equal to 1;   is defined 
as follows:

( ) =
∫ ( + + )
0  	 (29)

Where  (
dB

Km
)  

is the attenuation coefficient of gases, kn (dB/Km )  

corresponds to the absorption coefficient of clouds, and kp  (
dB

Km
)
 
is the 

attenuation coefficient of rain. All these coefficients take approximate 
values intended for an S-band radar [10]: 

Specifically, for an S-band radar, attenuation of gases is negligible, 

thus, = 0 / ,  = 0.004 dB/Km, and  = 0.004 dB/Km, 
for precipitations of about 12 mm/h [11]  .According to these values, 

we obtain Lp = 1.072 together with its reciprocal −1
= 0.9323.

TABLE XII
UNCERTAINTY DUE TO ATTENUATION

Parameter
Value

−1 

Relative 
Uncertainty 

( ) 

Fractional 
Uncertainty  

( )
 

Attenuation loss 0.9323 0.01 0.010

In order to calculate the fractional uncertainty of reflectivity, we use 
equation (19). These results can be observed in Table XIII.

TABLE XIII
REFLECTIVITY UNCERTAINTY

[
( )

]

2

= [
( )

]

2

+ [2
( )

+ 2
( )

]

2

+ [
( )

]

2

 

Fractional Uncertainty Triangular Value Normal Value

( )
 0.2924 0.2879

( )
 0.010 0.010

( )
 0.10 0.10

( )
 0.17 0.17

( )
 0.4034 0.4002

By using these data and also considering a sample reflectivity 
measurement of 40 dB (10000 mm^6/m^3), the following values are 
obtained:
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Linear scale:

= 10000 ± 4002 

6

3
 

Logarithmic scale:

= 40 ± 1.5 

Provided there is considerable reflectivity uncertainty, it is worth 
noting that all this uncertainty propagates over the final precipitation 
estimation. 

For the computation of precipitation uncertainty, the most common 
Z-R empirical relation is adopted [12]  

=   	 (29)

Solving for R, we obtain:

= ( )

1

 

	 (30)

Teni Using equation (25), the following expression is obtained to 
compute the precipitation uncertainty:

2( ) = [ ]

2
2

( )+ [ ]

2
2

( )+ [ ]

2
2( ) 

	 (31)

The following table shows the results obtained from the partial 
derivatives:

TABLE XIV
PARTIAL DERIVATIVES FOR THE PRECIPITATION UNCERTAINTY 

MODEL

= ( )

1

=  

1  1
  

2  −
1

 −  

3  −
1

2
[ ] −

2
 [ ] 

By substituting the partial derivatives we obtain:

2( ) = [ ]

2
2

( )+ [ ]

2
2

( )+ [
2

 [ ]]

2

2( ) 

[
( )

]

2

= [

2
( )

]

2

+ [

2
( )

]

2

+ [

2( )

2
 [ ]]

2

          

	 (32)

Finally, the following expression can be obtained to find the 
fractional uncertainty of precipitation using the Z-R relation:

( )
=

1
√ [

2
( )

]

2

+  [

2
( )

]

2

+  [ [ ]]

2

[

2( )
 ]

2

 

	(33)

Based on the previous expression, it is possible to calculate the 
Type-A fractional uncertainty for constants “a” and “b” from the data 
provided in the literature regarding various Z-R relations.

TABLE XV
A SUMMARY OF DIFFERENT VALUES FOR “A” AND “B” 

REGARDING Z-R RELATIONS [13], [14].

a b a b a b

200 1,6 300 1,4 124 1,64

300 1,35 21 1,71 667 1,33

176,5 1,29 486 1,37 500 1,5

215,9 1,35 300 1,5 450 1,46

171,9 1,19 250 1,2 200 1,6

172,8 1,33 130 2 800 1,6

371 1,24 75 2 348 1,81

162 1,48 140 1,5 134 1,55

167,8 1,26 250 1,2 162 1,48

65,5 1,69 436 1,43 371 1,24

To calculate the Type-A standard uncertainty of “a” and “b” equation 
(3) was used, yielding the following values:

TABLE XVI
PRECIPITATION UNCERTAINTY

Fractional Uncertainty Triangular value Normal value

( )
 0,4034 0,4002

2
( )

 0,1197 0,1197

2( )
 0,02624 0,02624

( )
 0.2920 0.290

Specifically, when reflectivity is equal to 10000 mm
6

m3
, a=271.58, 

and b = 1.476, the following uncertainty values can be calculated for 
precipitation (R):

= (
10000

271.58
)

1

1.476

 

= 11.49 ± 29% 

= 11.49 ± 3.33  

IV.	Conclusions

The antenna represents the element that most contributes to 
introducing uncertainty in the radar’s constant; therefore, antennas 
play a crucial role in calibration processes. Additionally, a lot of effort 
should go into estimating the actual antenna gain and beam-width 
angles due to the nature of these variables as well as to the external 
uncertainty sources involved.

Although the fractional uncertainty associated to the radar’s constant 
is 40%, when propagating towards the Marshall & Palmer Z-R relation 
used herein (for precipitation estimation), its value decreases down to 
29%. The previous result follows from the very nature of the resulting 
expression for estimating precipitation in the Z-R relation.

The present work does not deal with all the possible uncertainty 
sources that affect quantitative precipitation estimation using radars. 
Specifically, aspects such as the space-time variation of the drop size 
distribution (dsd) would undoubtedly contribute to having greater 
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uncertainty in the final results of similar studies. Furthermore, other 
uncertainty sources were also omitted, e.g. the uncertainty related 
to the non-linearity of transmitters and receivers, the partial beam 
filling, evaporation and condensation. These other uncertainty sources 
represent an interesting challenge for future research on precipitation 
estimation uncertainty using weather radars. 
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