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Abstract — A wide variety of real world optimization problems 
can be modelled as Weighted Constraint Satisfaction Problems 
(WCSPs).  In this paper, we model this problem in terms of in 
original 0-1 quadratic programming subject to leaner constraints. 
View it performance, we use the continuous Hopfield network to 
solve the obtained model basing on original energy function. To 
validate our model, we solve several instance of benchmarking 
WCSP. In this regard, our approach recognizes the optimal 
solution of the said instances.
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I.	 Introduction

Constraint programming is a successful technology for solving 
combinatorial problems modelled as constraint satisfaction 

problems (CSPs).  In the last few years, the CSP framework has 
been extended to the soft constraints permits to express preferences 
among solutions [2][3]. Soft constraint frameworks associate costs to 
tuples and the goal is to find a complete assignment with minimum 
aggregated cost. Costs from different constraints are aggregated with 
a domain dependent operator. This case is known as the Weighted 
Constraint satisfaction problems (WCSPs)[15][16][21]. This latter is 
an extension of the CSP problem. Each constraint of the problem has 
an associated weight. If a solution violates a constraint, then the weight 
associated to the corresponding solution is incurred. Every solution has 
a cost as the sum of all weight incurred by the solution. The objective 
of this problem is to find the solution with the minimum cost.

In this paper, we focus on the weighted constraint satisfaction problem 
(WCSP), a well-known non-idempotent soft-constraint framework with 
several applications in several domains such as resource allocation, 
scheduling, bioinformatics, CP networks and probabilistic reasoning 
[16]-[17]. In the literature, a number of different approaches have been 
developed to solve this problem [7]-[9]-[10]-[14]-[15]. In this work 
we propose a new model of WCSP problem consists in minimizing 
the quadratic objective function subject to linear constraints (QP). To 
solve the QP problem, many different methods are tried and tested such 
as interior point, semi definite relaxations and lagrangian relaxations 
[20]. In our case, we introduce the continuous Hopfield network for 
solving The QP problem in order to validate our model.

Hopfield neural network was introduced by Hopfield and Tank [10]
[11][13][23]. It was first applied to solve combinatorial optimization 
problems. It has been extensively studied, developed and has found 
many applications in many areas, such as pattern recognition, model 
identification, and optimization. CHN also demonstrated capability of 
finding solutions to difficult optimization problems [5].

In this paper, our main objective is to propose a new approach for 
solving the weighted constraint satisfaction problems using continuous 

Hopfield network. This paper is organized as follows: In section 2, we 
define weighted constraint satisfaction problems. In the last section, 
we propose and describe the new model of the binary WCSP problem. 
This problem is formulated as a quadratic assignment problem with 
linear constraints. A new theorem, which consists to define the relation 
between the WCSP problem and the quadratic programming, is 
demonstrated. In section 4, an introduction of CHN is presented, the 
generalized energy function associated to WCSP problem is defined 
and a direct parameter setting procedure is computed. Finally, the 
implementation details of the proposed approach and experimental 
results are presented in the last section. 

II.	 New Model of Weighted Constraints Satisfaction 
Problems

A constraint satisfaction problem refers to the problem of finding 
values to a set of variables, subject to constraints on the acceptable 
combination of values. Solving this problem requires finding values 
for problem variables from each domain, which satisfies all members 
of the set of constraints. In some cases a privilege tuples relative to 
others. This case is known as a weighted constraint satisfaction 
problem (WCSP). The solution of this later is similar then the classical 
CSP with the cost according to this solution is optimal.

A.	 Weighted constraint satisfaction problem
Each constraint of the problem has an associated weight (or error). 

If a solution violates a constraint, then the weight associated to this 
solution is incurred. Every solution has a cost which consists of the 
sum of all weight incurred by the solution. For a WCSP problem, a 
relevant question, both theoretically and practically, is to determine an 
assignment of values to variables with the minimum cost. This problem 
is calcified as NP-hard problems [8].

In general, a WCSP problem forms a class of models representing 
problems that have as common properties, a set of variables and a set of 
constraints [2]–[3]. The variables should be instantiated from a discrete 
domain. The study of WCSP problem has become focused on binary 
forms. More precisely, a weighted constraint satisfaction problem is 
defined by a quadruplet sets (Y, D, C, S(k)) where:  

•	 1= { , ......, }nY y y is the set of n  variables,

•	 1= { ( ), ....., ( )}nD D y D y where each ( )iD y  is the set of di 
possible values for yi, 

•	 1= { , ......, }mC C C is the set of m constraints which restricts the 
values that the variables can simultaneously take. 

•	 S(k) is the valuation structure, where K +∈ denotes the 
maximum cost.

•	 The valuation structure is defined as S(k) = ({0, 1, ..., k},⊕,>), 
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where:
•	 {0, 1, ..., k} is the set of costs, which are natural numbers bounded 

by k.
•	 ⊕ is the sum of costs ∀a, b ∈ {0, 1, ..., k},  a⊕b = min{k, a + b}
•	 > is the standard order among naturals.

For each constraint Cij and each tuple tp represented by two values 
(vr,vs) from the domains associated with the variables involved in Cij, a 
cost crs∈{0,1, . . . , k} is assigned to tp. When a constraint Cij assigns the 
cost k to a tuple tk, it means that Ci forbids tp. Otherwise, tp is permitted 
by Ci with the corresponding cost. The cost of an instantiation of 
variables is the sum (using operator ⊕) over all constraints involving 
variables instantiated. 

B.	 Modelling the WCSP problems
The solution of weighted constraint satisfaction problem is based 

on assigning each variable, a value from its domain with the minimum 
cost. In this context, we propose a new model of the WCSP problem as 
0-1 quadratic programming, which consists in minimizing a quadratic 
function subject to linear constraints. During this phase of modelling, 
we use different mathematical notations motioned bellow. 

In this case, we want to propose a formulation of the WCSP problem. 
This formulation is based on the selection variables. Then, in the first 

time, for each variable iy  of the WCSP problem, we introduce 
i

d  

binary variables 
ir

x  such that: 

1 =
= ( )

0
i r

ir r i

if y v
x v D y

Otherwise
∈



 	 (1)

The vector of variables is represented by:

( )11 1 11

T

d n ndn
x x x x x≡      with

=1
=

n

ii
N d∑  and =| ( ) |i id D y

Based on this binary variable we have for each couple ( , )r sv v : 

0  ( , ) 

1     ( , ) 
= r s ij

r s ij
ir js

if v v R

if v v R
x x

∉

∈


 	 (2)

The mean property of the solution to the WCSP is that each variable 
iy  must take an unique value rv  from its domain ( )iD y . Then the 

linear constraints of WCSP problem are defined bellow: 

=1

= 1
di

ir
r

x∑
	 (3)

In the second time, it is necessarily to treat two cases. The first one 
is the case of the unary constraints, but the second one is case of the 
binary constraints.

Each unary constraint 
iC  is defined by its relation iR , specifying 

the privileged values using the notion of cost. Recall that, for each 

constraint 
iC  and each value vr, a cost cir{0,1, . . . , k} is assigned to vr. 

Then, for each value vr we generate a constant: 

  
c     

                r i
ir

r iir

k if v R
q

if v R
∉

=
∈



 	 (4)

Based on these propositions (equations (1) and (4)), each unary 

constraint 
iC  can be characterized by the following expression: 

=1
             di

ir irr
q x∑ 	 (5)

Finally, we can generalize this expression for all constraints of the 
WCSP problem by the following global expression:

=1 =1
                  n di

ir iri r
q x∑ ∑ 	 (6)

In the same, each binary constraint ijC  between variables iy  and 
jy  is defined by its relation ijR  specifying the compatible values 

between iy  and jy  with certain cost. Recall that, for each constraint 
ijC  and each tuple tl represented by two values (vr,vs) from the 

domains associated with the variables involved in ijC , a cost crs∈{0,1, 
. . . , k} is assigned to tl. Then, for each couple ( , )r sv v  we generate 
a constant: 

 ( , ) 
c     ( , ) 

            r s ij
irjs

r s ijrs

k if v v R
q

if v v R
∉

=
∈



 	 (7)

Each constraint ijC  can be characterized by the following 
expression: 

=1 =1
          d di j

irjs ir jsr s
q x x∑ ∑ 	 (8)

Finally, we can generalize this expression for all constraints of the 
WCSP problem by the following global expression:

=1 =1 =1 =1

       
ji ddn n

irjs ir js
i j r s

q x x∑∑∑∑
	 (9)

Based on these two expressions (equations (6) and (9)), the objective 
function ( )f x  can be formulating in the following form: 

=1 =1 =1 =1 =1 =1

( ) =    +
ji idd dn n n

irjs ir js ir ir
i j r s i r

f x q x x q x∑∑∑∑ ∑∑
	 (10)

Then, the objective function can be written in the following matrix 
form:

1
( ) =                  

2
T Tf x x Qx q x+

	 (11)

Finally, the binary WCSP problem is modelled as a 0-1 quadratic 
programming with a quadratic function subject to linear constraints:

1
( ) =

2

( )
=

{0,1}

T T

N

Min f x x Qx q x

Subject toQP
Ax b

x

+

∈









Where Q is an N×N symmetric matrix, A is an N×n matrix, q is an N 
vector and b is an N vector. 

The following theorem determines the relation between a binary 
WCSP problem and optimization model QP. In order to validate this 
new model of WCSP, we use the continuous Hopfield network for 
solving the resulting model.
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III.	The Proposed Model Solved by Continuous Hopfield 
Networks

In this section, we present a general approach to solve this problem 
using the continuous Hopfield networks. The neural network approaches 
are the efficient approaches for solving different problems in different 
areas [2]–[4]–[9]–[1]–[19]. Moreover, Hopfield and Tank [10]–[11] 
presented the energy function approach in order to solve several 
optimization problems [2]-[6]. Their results encouraged a number of 
researchers to apply this network to different problems. The continuous 
Hopfield neural network is a generalization of the discrete case. The 
common output functions used in the networks are hyperbolic tangent 
functions. Afterwards, many researchers implemented CHN to solve 
the optimization problem, especially in mathematical programming 
problems.

The CHN is a fully connected neural network, which means that 
every neuron is connected to all other neurons. The connection weights 
between the neuron i and neuron j is represented by Wij and each neuron 

i has an offset bias b
ii  [12]. 

For solving any combinatorial problems, it is necessarily to map it’s 
in the form of the energy function associated to the continuous Hopfield 
network. The expression of this energy function is the following: 

1
( ) = ( )            

2
T b TE x x Wx i x− −

	 (12)

In this work, our main objective is to solve the QP problem, i. e., 
solving weighted constraint satisfaction problem using the continuous 
Hopfield network. According to the proposed model, which consists 
modeling the WCSP problem into a quadratic programming QP, 
this step of representation becomes easy and more general. Then, 
the continuous Hopfield network can be used to solve the weighted 
constraint satisfaction problem[1]-[18].

In order to represent this latter, the energy function must be defined 

by two expressions ( )OE x  and ( )CE x . The first one is directly 
proportional to the objective function of the QP problem and the second 
one is a quadratic function that penalizes the violated constraints of the 
QP problem. Therefore the energy function associated to the CHN is: 

( ) = ( ) ( )O CE x E x E x x H+ ∀ ∈ 	 (13)

Where H is set of the Hamming hypercube:

{ [0,1] }NH x≡ ∈

The algebraic form of the generalized energy function is:

=1 =1 =1 =1 =1 =1 =1

=1 =1 =1 =1

=1 =1

1
( ) =

2 2

         (1 )                                 (14)

dd d djn n ni i i

irjs ir js ir is
i j r s i r s

d dn ni i

ir ir ir
i r i r

idn

ir ir
i r

E x q x x x x

x x x

q x
α

φ

β γ

α+

+ + −

+∑∑∑∑ ∑∑∑

∑∑ ∑∑

∑∑

	 (14)

The weights and thresholds of the connections between N  neurons 
are: 

(1 ) 2

                         
irjs ij irjs ij ij rs

b

ir ir

W q

i q

α δ δ φ δ δ γ

α β γ

= − − − +

= − − −



 	 (15)

Where ijδ  is the Kroenecker delta. 
In this way, the quadratic programming has been presented as 

an energy function of continuous Hopfield network. To solve an 
instance of the QP problem, the parameter setting procedure is used. 
This procedure assigns the particular values for all parameters of the 
network, so that any equilibrium points are associated with a valid 
affectation of all variables when all the constraints in QP problem are 
satisfied. We observe that, the weights and thresholds of the continuous 

Hopfield network depend on the parameters α , φ , β  and γ . To 
solve the QP problem via the CHN, an appropriate setting of these 
parameters is needed[1]-[19]. The parameter-setting procedure is 
based on the partial derivatives of the generalized energy function:

=1 =1 =1

( )
= (1 2 )

d djn i

irjs js is ir
j s sir

E x
q x x x

x
α φ β γ

∂
+ + + −

∂
∑∑ ∑

	 (16)

Based on this hyperplane method and the associated half-spaces, the 
complementary corners set of the feasible solutions for the QP problem 
is partitioned and a set of analytical equations of the CHN parameter 
is proposed[19]. When we apply this method, the obtained analytical 
equations system is: 

min

max

> 0 , 0
2 0 (17. )

2 = (17. )
= (17. )

a
d b

d c

α φ
φ γ

α φ β γ ε
α β γ ε

≥
 − + ≥
 + + −
 + + −

Where
min min min max max max,    d dQ q Q q= + = +

With { }min irjsQ Min q=  and { }min irq Min q=

{ }max irjsQ Max q=  and { }max irq Max q=

The inequation (17.a) guaranteed the satisfaction of the integrity 

constraints ( {0,1}irx ∈ ), but the equations (17.b) and (17.c) 
guaranteed the satisfaction of the linear constraints. 

Finally, the weights and thresholds of CHN (system 15) can be 
calculated using these parameters setting. Finally, we obtain an 
equilibrium point for the CHN using the algorithm depicted in[17], so 
compute the solution of constraint satisfaction problem. 

IV.	Computational Experiments

In order to validate the proposed approach, some experiments are 
effectuated to solve some typical problems of WCSP problem[16]. 
These experiments are effectuated in personal computer with a 2.79 
GHz processor and 512 MB RAM. This approach is implemented 
by java language. The performance has been measured in terms the 
minimum obtained cost. 

Recall that n is the number of variables. Based on a series of 
experiments, α and ε  are determined by the following values:  

1
=

n
α

, 
4= 10ε −

In comparison with wbo 1.72WCSP solvers, the optimum cost 
obtained by CHN is very interesting, it equal to optimum cost obtained 
by this solver[22]. Morever, these results are obtained in the minimum 
time(See TABLE I). Noted that, this exeperement stady is integrated 
just for validate our proposed model. Generally, our model is very 
successful, it happens to reperent fidelly the weithted constraint 
satisfaction problems. Finally, we can concluded that the best results 
are obtained by this approach. 
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V.	 Conclusions

In this paper, we have proposed a new approach for solving binary 
weighted constraint satisfaction problems. The interesting steps of 
this approach are: proposing the new model of weighted constraint 
satisfaction problem as a 0-1 quadratic program subject to linear 
constraints and using the continuous Hopfield network to solve this 
problem. The most interesting propriety of this approach is used to give 
the solution of the binary WCSP. The experimental results show that 
our method can find a good optimal solution in short time. The future 
directions of this research are reducing the architecture of Hopfield 
neural network and applying the proposed approach to give a good 
solution of real world problems [4]-[5].
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TABLE I: computational results of the typical WCSP instances

Instances name Variable 
numbers

Constraint 
numbers

maximal 
Cost

Solver wbo 1.72
Optimum cost

CHN
Optimum cost Execution time (s)

4wqueens 4 10 5 0 0 0.002

spot5-8 8 15 13 2 2 0.003

langford-2-4 8 32 1 0 0 0.007

8queens 7 28 1 0 0 0.008

8wqueens 8 36 9 2 2 0.013

zebre-ext 23 62 1 0 3 0.014

geom30a-3_wcsp 30 81 82 11 -- --

geom30a-5_wcsp 30 81 82 1 1 0.008

geom30a-6_wcsp 30 81 82 0 0 0.008

geom40-2_wcsp 40 78 79 22 -- --

geom40-3_wcsp 40 78 79 7 7 0.003

bwt3cc_wcsp 45 685 1073 -- 1073 0.016

mprime03bc_wcsp 49 625 4941 -- 2843 0.062

myciel5g-3_wcsp   47 236 237 -- -- 0.010

myciel5g-4_wcsp   47 236 237 -- -- 0.015

spot5-29_wcsp 82 462 20092 -- 5038 0.072
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