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Abstract — A pedestrian inertial navigation system is typically 
used to suppress the Global Navigation Satellite System limitation 
to track persons in indoor or in dense environments. However, low-
cost inertial systems provide huge location estimation errors due 
to sensors and pedestrian dead reckoning inherent characteristics. 
To suppress some of these errors we propose a system that uses 
two inertial measurement units spread in person’s body, which 
measurements are aggregated using learning algorithms that 
learn the gait behaviors. In this work we present our results on 
using different machine learning algorithms which are used to 
characterize the step according to its direction and length. This 
characterization is then used to adapt the navigation algorithm 
according to the performed classifications.

Keywords—Pedestrian Inertial Navigation System, Indoor 
Location, Learning Algorithms, Information Fusion 

I. Introduction

LOCATION information is an important source of context for 
ubiquitous systems, as it can be explored to improve life quality since 
emergency teams [1] can respond more precisely if the team members 
location is known, tourists can have better recommendations [2], the 
elderly can be better monitored [3], parents can be more relaxed with 
their children in shopping malls [4] and presence control systems can 
produce better reslts [22].

The major limitation of these systems is related to retrieving 
individual’s location, which nowadays is only based on a GNSS 
(Global Navigation Satellite System), restricting the use of these 
systems to environments where GNSS signals are available. However, 
GNSS signals are not available inside buildings, in urban canyons, 
in the underground, underwater and in dense forests. Consequently 
location-aware applications sometimes cannot know the user location. 
Therefore, developing complementary localization technologies for 
these environments would unleash the use of many applications as 
presented above [23].

There are already some proposed systems that retrieve location 
in indoor environments. However, most of these solutions require 
a structured environment [5]. Therefore, these systems could be a 
possible solution for indoor environments, but in a dense forest or in 
urban canyons they are very difficult to implement.

To suppress structured environment limitations, a Pedestrian Inertial 
Navigation Systems (PINS) can be used. Typically, a PINS is based 
on an algorithm that involves three phases: step detection, step length 
estimation and heading estimation. A PINS uses accelerometers, 
gyroscopes, among other sensors, to continuously calculate via dead 
reckoning the position and orientation of a pedestrian. These sensors 

are based on MEMS (Microelectromechanical systems), which are 
tiny and lightweight sensors, making them ideal to integrate into the 
person’s body. Unfortunately, large deviations of inertial sensors can 
affect performance, so the PINS big challenge is to correct the sensors 
deviations.

In the previous works of the research team, the step detection was 
improved by using an algorithm that combines an accelerometer and 
force sensors placed on the pedestrian’s foot [6]. This approach led 
to better results [7] on the estimation of the pedestrian displacement. 
However, it still exists an error of 0.4% in step detection and an error 
of 7.3% in distance estimation.

We have found that a PINS solution only based on one IMU (Inertial 
Measurement Unit), composed by an accelerometer and a gyroscope, 
is not accurate enough. Thus, we believe that using several IMU in 
the person’s body, combined with an information fusion strategy, will 
improve the accuracy of a PINS.

Information fusion is a multi-disciplinary research field with a 
wide range of potential applications in areas such as defense, robotics, 
automation and pattern recognition. During the past two decades, 
extensive research and development on multiple sensor data fusion has 
been performed for the Department of Defense of the United States 
of America [8]. This subject has been and will continue to be an ever-
increasing interest field in research community, where it is intended 
to develop more advanced information fusion methodologies and 
architectures.

In the case of PINS, the MEMS sensors have some limitations 
and low accuracy, which does not happen on more expensive sensors 
like the ones used on aviation and military applications. To reduce 
the sensors complexity and thereby its cost, the information from a 
set of simple and low-cost sensors can be combined. This leads to 
the creation of a less expensive system, which captures accurate and 
reliable information about the pedestrian movements. Moreover, this 
fusion turns the system more fault tolerant [21].

Information fusion combined with learning techniques are being 
used in different INS fields to assist in displacement estimation. In 
robotics, Faceli et al. [9] use these techniques to improve the accuracy 
of distance measurements between a robot and the objects present in 
the environment by 7%.

These techniques are also used in autonomous driving vehicles. 
Stanley [10] software relied on machine learning and probabilistic 
reasoning techniques. Its IMU combined with artificial intelligence 
techniques were able to maintain accurate pose of the vehicle during 
GPS outages of up to 2 minutes.

In land vehicle applications, Caron et al. [11] and Noureldin et 
al. [12] propose machine learning techniques like neural networks, 
which introduce context variables and errors modelling for each 
sensor. Authors conclude that with an adequate modelling an accuracy 
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improvement of 20% can be achieved. Recently, Noureldin et al. [13] 
have improved the previous results by considering past samples of INS 
position and velocity errors. Bhatt et al. [14] propose a hybrid data 
fusion methodology using Dempster-Shafer theory augmented by a 
trained Support Vector Machine (SVM), which corrects the INS errors. 
The proposed methodology has shown an accuracy improvement of 
20%.

Since these experiences presented good results in the respective 
area, we wanted to explore similar techniques but applied to PINS. Our 
proposal applies an information fusion from several IMU spread in the 
person’s body, and learning algorithms that based on contextual and 
past examples can improve the PINS accuracy. However, we needed 
to understand which is the best machine learning model to be used in 
a PINS.

This goal is addressed throughout the document, where the system 
architecture is presented in Section II. In the following three sections, 
Section III, IV and V, are presented the machine learning algorithms 
that were used to characterize a step. This characterization is applied to 
limit the typical error growing of PINS. In these sections is presented 
a comparison between a SVM and a Neural Network. In Section III 
are presented the algorithms that characterize the step according to the 
type of terrain, normal (flat) or stairs (i.e. ascending or descending). 

In Section IV are presented the algorithms that characterize the step 
as forward or backward, and in Section V are presented the algorithms 
that classify a step according to its size (i.e. short, normal and long). In 
each section is presented an evaluation made to each algorithm. Finally, 
in Section VI are discussed the conclusions and the future work. 

II. System Architecture

The proposed system is composed by two low-cost IMU, developed 
by the authors [6], and an “Integration Software” (described in Sections 
III, IV and V). The “Integration Software” starts by filtering the signals 
obtained from the sensors, then some features are extracted, which are 
used to detect a step and thereby to characterize it according to some 
previously learned data. Finally, the displacement is estimated based on 
the collected information. This architecture is represented in Figure 1.

When referring to a low-cost IMU it implies different things for 
researchers, since for some a thousand euros IMU is considered low-cost. 
However, in a PINS a low-cost IMU should cost less than 100€. This 
price restriction, implies the use of MEMS sensors that are truly low-cost.

The first IMU (Waist IMU), represented in Figure 2, is placed on the 
abdominal area and is composed by a STMicroelectronics L3G4200D 
gyroscope [15], a Analog Devices ADXL345 accelerometer [16] and a 
Honeywell HMC5883L magnetometer [17].

The second IMU (Foot IMU) is placed on the foot and is represented 
in Figure 3. It is composed by an Analog Devices ADXL345 

accelerometer [16], a STMicroelectronics L3G4200D gyroscope [15] 
and two Tekscan FlexiForcer A201 force sensors [18]. Typically, an 
accelerometer is used to detect and quantify the foot movement, and 
the gyroscope is valuable to transform this acceleration data from the 
sensor frame to the navigation frame.

Force sensors were included since they can improve the detection 
of the moments when the user touches his feet on the ground, as well 
as, the correspondent contact force. The combination of force sensor 
data with accelerometer data improves the accuracy of the step length 
estimation [7]. One force sensor was placed on the front part of the foot 
and the other on the heel, as shown in Figure 3.

Although the pattern of the acceleration can be used to classify a 
step, sometimes the accelerometer produce a signal that does not follow 
any pattern, which turns to be useless to correctly classify a step.

These random readings can be surpass by using several sources 
of data combined with learning algorithms. The probability that two 

Figure 2 - Waist BSU with the corresponding axis

Figure 3 - Foot BSU with the corresponding axis

Figure 1 - System architecture.
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sources of data give erroneous acceleration patterns at the same step 
is much reduced. The fusion between all the sensors information can 
improve the number of correct classifications.

III. Step Terrain

The first step characterization that is performed, is about the type of 
terrain where it was given. There are three possibilities: (i) in a normal 
(flat) terrain; (ii) or in ascending; (iii) or descending stairs. 

For this characterization it was used the data from three sensors: (i) 
foot accelerometer (y-axis); (ii) foot gyroscope (z-axis); (iii) and waist 
accelerometer (x-axis). 

The y-axis of the foot accelerometer provides relevant information 
about the foot elevation, which is essential to distinguish between 
ascending or descending stairs, since the forces are the opposite. 
However, from the several tests performed it was noticed that the 
main distinction that can be made using this sensor data is between 
ascending stairs and the other types of terrain. When ascending a stair 
the foot has to perform a higher elevation than in the other two cases. 
Regarding the other two types of terrain, descending stairs and normal, 
the data obtained from this sensor is very similar. The main difference 
is at the end of the step that, in the case of descending stairs, a higher 
acceleration is sensed since the foot touches the ground with a higher 
force than in the normal terrain type.

The z-axis of the foot gyroscope provides information about the 
foot rotation in each type of terrain. The foot rotation is much more 
noticeable in the ascending and descending stairs terrains. When 
ascending stairs it has an upward rotation peak and then a downward 
rotation peak, and it is the opposite when descending stairs. The data 
from this sensor is very important to make the distinction between 
these two types of terrains. Regarding the normal terrain, the pattern is 
similar to the descending stairs. However, the sensed rotation is much 
softer. Nonetheless this sensor provides a good accuracy on making the 
distinction between the three types of terrain.

Finally, the x-axis of the waist accelerometer provides similar data 
as the foot accelerometer. In ascending stairs a higher acceleration 
is sensed, in both positive and negative scales. When descending 
stairs this acceleration is much lower than in the other two types of 
terrain. The acceleration sensed in the normal terrain is within the 
other two. It provides similar data to distinguish between a flat surface 
and descending stairs. However, when ascending stairs it provides 
distinguishable data. 

Considering the data provided by these signals, it can be established 
that, combining their data, they are suitable to be used to differentiate 
each possible characterization terrain. Since the strengths of each 
signal can be combined to achieve a final consensus.

To perform this characterization the learning algorithms were fed 
with a total of 72 inputs (24 inputs per each sensor). Each sensor 
signal was divided into 6 equal parts, and for each one of these parts 
the maximum, minimum and mean values were obtained, as well as, 
the slope. The slope was calculated based on the first and on the last 
measurement of each part. This data gives a total of 24 inputs per each 
sensor that are fed into the learning algorithm.

The division of the signal was made because giving to a classifier 
a complete signal can be very heavy and confusing to the algorithm 
to identify the patterns of the signal and therefore estimate the correct 
label for that pattern. Thus, it is reduced the dimensionality of the 
problem domain for the purposes of improving the performance of the 
algorithms and to decrease the computational load.

It was decided to divide the signal in 6 parts, because, during a 
step, each sensor signal is typically composed by 30 measurements. 
Thus, in order to have an average of 5 measurements per iteration the 

signal was divided into 6 equal parts. More parts will divide the signal 
too much, and fewer parts will pass insufficient information to the 
learning algorithm. Thus, the 6 was the number of parts that have best 
represented each one of the signals.

The learning algorithms were trained with a total of 970 samples, 
358 samples of ascending stairs steps, 358 samples of descending 
stairs steps and 254 samples of normal terrain steps. To validate 
the algorithms a total of 170 samples were used (62 ascending, 
62 descending and 46 normal). To test the algorithms a total of 
540 samples were used (180 ascending, 260 descending and 100 
normal), and a 10-fold cross-validation using these datasets was also 
performed.

A. SVM
Since in this characterization there are three possible classes (i.e. 

normal, ascending or descending stairs), and the SVM models can only 
classify two at each time, three SVM models (SVM Model 1, SVM 
Model 2 and SVM Model 3) were created. From the executed tests 
it was identified that the best results were achieved using a kernel, 
configured as a 3th order polynomial. This architecture is represented 
in Figure 4.

The models were trained with the same data, but with different class 
labels vectors. In this case there are three vectors. The first vector, 
which is used by the SVM Model 1, indicates that the ascending stairs 
steps belong to the positive class and the others to the negative. The 
second vector, which is used by the SVM Model 2, indicates that the 
descending stairs steps are the positive entries and the other the 
negatives. The third vector, which is used by the SVM Model 3, 
indicates that the normal terrain steps are the positive classifications 
and the others the negative. Meaning that the positive class of each 
classifier is ascending stairs, descending stairs and normal terrain, 
respectively.

The score of the new observations are then estimated using 
each classifier. This will create a vector with three scores, one 
per each classifier. The index of the element with the highest 
score is the index of the class to which the new observation most 
likely belongs. For example, if the first index has the highest 
value, then the step is classified as ascending stairs. Thus each 
new observation is associated with the classifier that gives to it 
the maximum score.

After the learning phase, a 10-fold cross validation to the 
model was performed. The SVM Model 1 presented no error, 
the SVM Model 2 presented an error of 0.8% and the SVM 
Model 3 presented an error of 2.6%.

Figure 4 - SVM architecture for step terrain characterization
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B. Neural Network
In Figure 5 is represented the design of the implemented neural 

network that classifies the type of terrain. The neural network receives 
as input (j) the 72 features previously presented. This input is passed 
to the Hidden Layer, which is composed by 144 neurons. Then, the 
Output Layer returns the final result about the type of terrain where the 
step was given.

The neural network parameters namely, the number of neurons in 
the hidden layer, the learning rate and the number of iterations, were 
tuned by trial and error. The learning rate was defined as 0.01 and the 
number of iterations as 36.

The mean squared error of the best validation performance was 7.97 
× 10−7 with a gradient of 9.80 × 10−7 at epoch 36.

The error given by the neural network is very low, where during the 
training phase more than 98% of the results are very close to zero error. 
The highest error for an instance was of 1.50 × 10−5.

C. Evaluation
The implemented algorithms that characterize the type of terrain, 

were evaluated using a dataset of 800 steps performed by two 
pedestrians (400 steps for each pedestrian).

The test scenario is represented in Figure 6, which involves a 
complex path with a set of straight walks and a set of stairs. 

The results obtained for this scenario can be seen in Table 1. This 
table presents for each algorithm, the categorization accuracy (in 
percentage).

For all the algorithms are presented the results obtained, in separate 
for each BSU and for the combination of the data of both BSU. This 
allows to identify which one of the BSU has higher accuracy in each 
characterization type.

TABLE 1 - ACCURACy RESULTS FOR STEP TERRAIN 
CHARACTERIZATION

Method
Ascending Descending Normal

Waist 
BSU

Foot 
BSU

Waist 
BSU

Foot 
BSU

Waist 
BSU

Foot 
BSU

SVM 97.5% 99.4% 94.2% 99.4% 85.1% 94.9%

N.N. 98.3% 100% 94.1% 100% 87.2% 94.9%

SVM Fusion 99.4% 99.5% 96.2%

N.N. Fusion 100% 100% 98.7%

Considering the obtained results it can be concluded that the 
ascending stairs class is the easiest to classify. The normal terrain class 
is sometimes confused with the descending stairs class, so it is with this 
misclassification that most errors occur.

Regarding the BSUs, the foot BSU gives more accurate data, 
since the foot is closer to the ground. The waist BSU can give a 
good indication about the vertical movement of the body. However, 
it obtains similar data when descending stairs and in normal terrain. 
Thus, it presents worst results in these classifications.

Interpreting the results obtained for each algorithm using each BSU 
in separate, it can be concluded that the Neural Network achieves 
better results on both BSU locations.

Analyzing the results obtained for each algorithm when considering 
the fusion of both BSU, the Neural Network presented the best results, 
achieving a mean accuracy of 99.4%, having 100% of accuracy on 
predicting the ascending and descending stairs classes.

Also, it can be concluded that through the sensors complementarity 
the type of terrain was categorized with higher accuracy. 

From our tests it was identified that a learned dataset 5 times smaller, 
than the used one, is sufficient to achieve similar results. Making the 
learning procedure simpler and faster to a pedestrian perform before 
using our system.

Concluding, the evaluation results show that both BSU give similar 
results on detecting each type of terrain, but with their integration 
better results can be achieved.

IV. Step Direction

The second characterization performed to a step is about the 
direction that it can take. There are two possibilities, a forward step, 
which is the most natural to a human perform, or a backward step. 

During this research, by analysing the datasets collected from all 
the walks, it was identified that step direction can be characterized 
by combining the data obtained from two sensors placed in different 
BSU, the foot accelerometer and the waist gyroscope. In the case of 
the accelerometer, the one placed in the pedestrian’s foot gives more 
accurate results than the one on the waist. However, in the case of the 
gyroscope, the best results can be achieved with the one placed on the 
waist, since it give us the pelvic rotation, which combined with the 
accelerometer data is important to determine the direction of a step.

To classify the step direction 25 features where extracted from the 
sensors measurements, where 24 are obtained from the accelerometer 
data and 1 from the gyroscope data. To extract the features from the 
accelerometer signal, it was divided into 6 equal parts. For each one of 
these parts the maximum, minimum and mean values were obtained, 
then it was calculated the slope.

Figure 5 - Neural Network architecture for step terrain characterization

Figure 6 - Evaluation Scenario
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The other input is obtained from the gyroscope signal, which 
represents the motion of the waist. If the pelvic as a positive rotation, 
then the value 1 is assigned to the input, if it is a negative rotation the 
value 0 is assigned to the input. For example, for a forward left step the 
rotation will be positive and for a backward left step the rotation will 
be negative, for the right foot it is the opposite.

To train the learning algorithms the following number of samples 
was used: 450 samples (190 forward and 260 backward) for training, 
100 samples for validation (40 forward and 60 backward) and 100 
samples (50 forward and 50 backward) for testing. A 10-fold cross-
validation using these datasets was also performed.

A. SVM
The design of the implemented SVM approach can be seen in Figure 

7. It receives as input the 25 features previously presented. This input is 
passed to the Hidden Nodes that estimate the best separating hyperplane 
between the two classes, which maximizes the margin between the two 
classes. This division is performed using a “linear” kernel. Then, the 
Output Layer returns the final result about the step direction. A degree 
of confidence for the two possible results is given by this algorithm.

During the cross-validation the algorithm achieved an accuracy of 
100% for both classes, forward or backward.

B. Neural Network
The design of the implemented neural network can be seen in Figure 

8. The neural network receives as input (j) the 25 features previously 
presented. This input is passed to the Hidden Layer, which is composed 
by 10 neurons. Then, the Output Layer returns the final result about the 
step direction.

The learning rate was defined as 0.01 and the number of iterations 
was defined as 31.

The mean squared error of the best validation performance is 2.08 × 
10−8 with a gradient of 9.58 × 10−7 at epoch 35. The error is very low 
when training the network, but even lower when validating and testing 
the established neural network. Also, more than 90% of the results are 
very close to zero error. The highest error for an instance, during the 
network training, was of 0.15.

C. Experimental Results
The step direction characterization algorithms were evaluated using 

a dataset of 240 steps performed by two pedestrians (120 steps for each 
pedestrian).

The test scenario is the same as in the previous characterization, 
where it was walked in forward and in backward movements. Two runs 
in this scenario, for each pedestrian, were performed.

The results obtained for this scenario can be seen in Table 2. 
From the obtained results, it can be concluded that, to perform this 
characterization, the data obtained from the foot BSU sensors are 
better, than the data obtained from the waist BSU sensors. This mainly 
happens because when the user is moving the foot is a more stable 
platform than the waist. A lot of unwanted accelerations are sensed by 
the waist, which leads to a poor characterization of the step direction, 
but there are some features that can be retrieved to help other sources 
to properly characterize the step.

Regarding the step direction characterization the backward one is 
the most difficult to classify. Mainly because for a human a forward 
step is a more natural movement to perform than a backward one.

The step direction is a simple characterization to be performed to a 
step, so the results were the expected. The learning algorithms proved 
to have an accuracy of 100%. 

For this characterization it was not detected any difference in 
behaviour between the two learning algorithms.

TABLE 2 - ACCURACy RESULTS FOR STEP DIRECTION 
CHARACTERIZATION

Method
Ascending Descending

Waist 
BSU

Foot 
BSU

Waist 
BSU

Foot 
BSU

SVM 98.6% 100% 96.7% 100%

N.N. 99.4% 100% 95.5% 100%

SVM Fusion 100% 100%

N.N. Fusion 100% 100%

V. Step Length

The third, and final, characterization performed to a step is about 
the length class. There are three possibilities, a short, a normal or a 
long step. These intervals must be defined from a set of exercises 
for a pedestrian in specific. Based on the collected data, and on the 
average of the collected steps, it was considered that short steps are the 
ones with a maximum distance of 30cm, the normal steps size ranges 
between 30cm and 45cm, and the long steps have a size longer than 
45cm.

The x-axis of the foot accelerometer measures the acceleration that 
is sensed in the horizontal movement of the foot. The quantification of 
this acceleration is important, because it is correlated with the performed 
displacement. As the duration and the peak of the acceleration is higher, 
the longer is the step.

The force sensor data gives reliable information about the amount 
of time that the foot is not in contact with the ground and, about the 
force intensity that is made when touching the ground, as well as, when 
lifting the foot from the ground. The amount of time that the foot is in 
the air, can be correlated with the acceleration. A higher acceleration 
value combined with a longer duration of the foot in the air, indicates 
that a longer step was made.

The x-axis of the gyroscope data gives reliable information about 

Figure 7 -  SVM architecture for step direction characterization

Figure 8 - Neural Network architecture for step direction characterization
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the rotation that was performed by the pelvic, where a higher rotation 
corresponds to a longer step. However, in corners this rotation can be 
higher for the same type of step. Thus, the combination of this data 
with the data given by the foot BSU sensors is important to achieve 
more accurate results. Many errors can occur by using the gyroscope 
data by itself.

The implemented learning algorithms have as input the foot force 
sensor and accelerometer data, and the waist gyroscope data. A total 
of 29 features are fed into the learning algorithms to classify the step 
length, where 24 are retrieved from the foot accelerometer, 3 from the 
foot force sensor and 2 from the waist gyroscope. 

The foot accelerometer signal was divided into 6 equal parts, as 
shown in the previous implemented neural networks. This gives a total 
of 24 inputs that are fed into the learning algorithm.

The next 3 features are obtained from the force sensor signal. The 
first one is the number of measurements that exist until the maximum 
force value occur (foot touches the ground). A stronger impact means 
that the step was longer. The other feature is the force applied when the 
foot lifts up from the ground. This gives information about the impulse 
that was performed in the leg in order to perform some horizontal 
movement. Typically, when the impulse is higher the step is longer. 
The last feature retrieved from the force sensor is the number of 
measurements with value of zero, which corresponds to the amount of 
time that the foot is in the air.

From the gyroscope signal two features are extracted. The first one 
is the amplitude of the signal, which is correlated to the size of a step. 
Typically, a higher rotation means that the step is longer. The second 
feature is the length of the signal, which correlated with the amplitude, 
gives important information about the size of the step.

From the several tests performed, these features were the ones that 
had the best results in classifying the possible length of a step.

The learning algorithms were trained with a total of 855 samples, 
435 samples of a short step, 225 samples of a normal step and 195 
samples of a long step. To validate the algorithms a total of 171 samples 
were used (87 short, 45 normal and 39 long). To test the algorithms a 
total of 114 samples were used (58 short, 30 normal and 26 long). As 
in the other characterizations a 10-fold cross-validation using these 
datasets was also applied.

A. SVM
The design of the implemented SVM approach can be seen in Figure 

9. This approach receives as input the 29 features previously presented.
In this characterization three SVM models (SVM Model 1, SVM 

Model 2 and SVM Model 3) were created. After some testing, it 
was identified that the best results were achieved with the following 
configuration for each model:
• SVM Model 1 was configured to classify the short steps using a 

“rbf” (radial basis function or Gaussian) kernel configured with an 
automatic scale;

• SVM Model 2 was configured to classify the normal steps with a 
“polynomial” kernel, configured as a 2nd order polynomial;

• SVM Model 3 was configured to classify the long steps using a 
“linear” kernel.

The models were trained with the same data, but with different class 
labels vectors. In this case there are three vectors. The first vector, 
which is used by the SVM Model 1, indicates that the short steps 
belong to the positive class and the others to the negative. The second 
vector, which is used by the SVM Model 2, indicates that the normal 
steps are the positive entries and the others the negatives. The third 
vector, which is used by the SVM Model 3, indicates that the long steps 
are the positive classifications and the others the negatives.

The score of the new observations are then estimated using each 
classifier. This will create a vector with three scores, one per each 
classifier. The index of the element with the highest score is the 
index of the class to which the new observation most likely belongs. 
For example, if the first index has the highest value, then the step is 
characterized as short. Thus, each new observation is associated with 
the classifier that gives to it the maximum score.

After the learning phase, a 10-fold cross validation to the model was 
performed. The SVM Model 1 had no error, the SVM Model 2 
presented an error of 7% and the SVM Model 3 presented an error of 
0.8%.

B. Neural Network
The implemented neural network to classify the step length is shown 

in Figure 10. The neural network receives as input (j) the 29 features 
previously presented. This input is passed to the Hidden Layer, which 
is composed by 60 neurons. Then, the Output Layer returns the final 
result about the step length.

As in the other characterizations the learning rate was defined as 
0.01, and the number of iterations as 25.

The mean squared error of the best validation performance was 7.55 
× 10−5 with a gradient of 4.59 × 10−4 at epoch 25.

During the training phase more than 95% of the results were very 
close to zero error, where the highest error for an instance, during the 
network training, was of 0.20.

C. Evaluation
The step length characterization algorithms were evaluated using a 

dataset of 300 steps performed by two pedestrians (150 steps for each 
pedestrian).

The test scenario is represented in Figure 6 and the obtained results 
can be seen in Table 3.

Figure 9 - SVM architecture for step length characterization

Figure 10 - Neural Network architecture for step length characterization
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TABLE 3 - ACCURACy RESULTS FOR STEP LENGTH 
CHARACTERIZATION

Method
Short Normal Long

Waist 
BSU

Foot 
BSU

Waist 
BSU

Foot 
BSU

Waist 
BSU

Foot 
BSU

SVM 98.4% 96.1% 80.3% 81.9% 92.6% 90.7%

N.N. 98.3% 100% 86.7% 83.3% 96.2% 100%

SVM Fusion 100% 86.0% 98.1%

N.N. Fusion 100% 90.0% 96.2%

Considering the obtained results, it can be concluded that for a 
short step both BSU present similar results. For this classification the 
learning algorithms presented an accuracy of almost 100%.

For a long step, there is not an evident difference between BSUs, 
since when considering the data from each BSU the Neural Network 
had the best results. However, when using the data from both BSU, 
SVM has the best performance.

The normal step is the most difficult to classify. The main reason 
for this phenomenon is because it sits between the other two classes. 
For this classification the combination of both BSU gives better results 
than using the data from each BSU individually. Nonetheless, none 
of the misclassifications given by the algorithms was to the opposite 
class, meaning that a short step was never classified as a long step and 
vice-versa.

Analysing the obtained results, it can be concluded that through 
the sensors complementarity the step length was categorized with 
higher accuracy. Also, it can be concluded that the learning of the 
gait parameters enables a more precise characterization of a step. The 
Neural Network gave the best results, having a mean accuracy very 
close to 96%.

From our tests it was identified that a learned dataset 10 times 
smaller is sufficient to achieve similar results. Making the learning 
procedure simpler and faster to a pedestrian perform before using this 
system.

The tests and the evaluation results, have shown that both BSU give 
similar results on detecting short steps, but in the case of normal steps 
the foot BSU has a higher accuracy. However, the long steps are better 
detected by the waist BSU.

Combining the data from both BSU, the weaknesses of one are 
suppressed by the advantages of the other, thus improving the overall 
results.

VI. Conclusion

Develop a PINS to be used by pedestrians in their daily life is a 
huge challenge. Many approaches already have been proposed, but 
must of them rely on a structured environment that usually is infeasible 
to implement and the others don’t provide the necessary accuracy.

To suppress some of these limitations we propose a PINS based 
on low-cost sensors and on fusion and learning techniques. The 
sensors are placed on the foot and on the waist of a pedestrian, and 
their information is combined to achieve more accurate location 
estimation results. The data from both IMU was heavily explored in 
order to provide an acceptable level of performance, since one IMU 
can complement the other in the different activities that a pedestrian 
can perform.

The proposed system characterizes the step according to the 
activity that the pedestrian is performing. This characterization starts 
by estimating the type of terrain where the step was given. Then it 
estimates if the step was a forward or a backward one. This is very 

important to correctly estimate the pedestrian displacement, since they 
are opposite directions. The third classification is regarding the step 
length. This characterization fits into one of three categories: short, 
normal or long. With this classification we limit the displacement 
estimation according to the bounds of each category.

The inclusion of the step characterization module, through the use 
of more than one IMU and the neural network algorithm, led to an 
improvement, compared to the previous results [7], in displacement 
estimation of 52%. In the same scenario the error has decreased from 
7.3% to 4.8%.

In the future we want to divide the step length characterization 
into more classes, to verify if it improves the displacement estimation 
accuracy. Also, we want to implement more step characterization 
characteristics. 
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