
Regular Issue

- 47 - DOI: 10.9781/ijimai.2015.356

Building Real-Time Collaborative Applications with
a Federated Architecture

Pablo Ojanguren-Menendez1, Antonio Tenorio-Fornés1, and Samer Hassan2

1 GRASIA research group of Complutense University of Madrid, Madrid, Spain,
2 Berkman Center for Internet & Society (Harvard University, US), Cambridge, US

Abstract —Real-time collaboration is being offered by
multiple libraries and APIs (Google Drive Real-time API,
Microsoft Real-Time Communications API, TogetherJS,
ShareJS), rapidly becoming a mainstream option for web-
services developers. However, they are offered as centralised
services running in a single server, regardless if they are free/
open source or proprietary software. After re-engineering
Apache Wave (former Google Wave), we can now provide the
first decentralised and federated free/open source alternative.
The new API allows to develop new real-time collaborative
web applications in both JavaScript and Java environments.

Keywords—Apache Wave, API, Collaborative Edition,
Federation, Operational Transformation, Real-time

I.	 INTRODUCTION

Since the early 2000s, with the release and growth of Wikipedia,
collaborative text editing increasingly gained relevance in the Web .

The wiki software [1] (such as MediaWiki, TikiWiki and others), which
enabled scalable collaborative edition of documents, rapidly became
popular. Nowadays, we can see thousands of wikis used by researchers,
institutions, enterprises, and a wide diversity of communities to
crowdsource the knowledge of the participants. Just Wikia [2], a wiki
service provider, accounts for 300K wiki communities with 135M
monthly visitors.

Writing texts in a collaborative manner implies multiple challenges,
especially those concerning the management and resolution of
conflicting changes: those performed by different participants over
the same part of the document. That is, if Alice and Bob edit the
same sentences at the same time, we should make sure none of their
contributions is lost. In fact, in a scenario where we have hundreds or
thousands or contributors over the same pages, such conflict is not rare.
These conflicts are usually handled with asynchronous techniques as in
version control systems for software development [3] (e.g. SVN, GIT),
resembled by the popular wikis. In these environments, the software
automatically merges contributions over different sections, but users
are forced to “take turns” to edit the same sentences (or otherwise
manually merge the others’ contributions to theirs).

However, some synchronous services for collaborative
text editing have arisen during the past decade. These allow
users to write the same document in real-time collaboration
(simultaneously), as in Google Docs [4] and Etherpad [5].
They tend to sort out the conflict resolution issue through the
Operational Transformation [6] technology which has grown to
become the de-facto standard in real-time collaborative systems. These
services are typically centralised: users editing the same content must
belong to the same service provider. However, if these services were
federated, users from different providers would be able to edit contents
simultaneously. Federated architectures provide multiple advantages

concerning privacy and power distribution between users and owners,
and avoid the isolation of both users and information in silos [7].

The rest of this paper is organised as follows: first, the state of the
art of Operational Transformation frameworks is outlined in Section 2.
Section 3 depicts the re-engineering approach and the technologies and
tools that were used. Section 4 covers the main concepts of the original
Wave Platform, and the changes that were performed are explained
in detail. Afterwards, the results are discussed in Section 5. Finally,
conclusions and next steps are presented in Section 6.

II.	 State of the Art of Real-time Collaboration

The development of Operational Transformation (OT) algorithms
started in 1989 with the GROVE System [8]. During the next
decade many improvements were added to the original work and an
International Special Interest Group on Collaborative Editing (SIGCE)
was set up in 1998. During the 2000s, OT algorithms were improved as
long as mainstream applications started using them [9].

In 2009, Google announced the launch of Wave [10] as a new
service for live collaboration where people could participate in
conversation threads with collaborative edition based on the Jupiter
OT system [11]. The Wave platform also included a federation protocol
[12] and extension capabilities with robots and gadgets [13]. Allegedly
because of lack of fast user adoption, in 2010 Google shut down the
Wave service. However, as initially promised, Google released the
main portions of the source code to the Free/Open Source community,
and handed its ownership to the Apache Foundation. Since then, the
project belongs to the Apache Incubator program and it is referred
as Apache Wave [14]. Eventually, Google has included Wave’s
technology on several products, such as Google Docs and Google Plus.
Despite its high technological potential, the original final product had a
constrained purpose and a hardly reusable implementation.

Other web applications became relevant during that time, such as
the Free/Libre/Open Source Software (FLOSS) Etherpad. However,
it was mostly after the Google Wave period when FLOSS OT-
based frameworks appeared, allowing the integration of real-time
collaborative edition of text and data within third-party applications.
The most relevant examples are outlined as follows.

TogetherJS [15] is a Mozilla FLOSS project that uses the WebRTC
protocol for peer-to-peer communication among web browsers, together
with OTs for concurrency control of text fields. It does not provide
storage and it needs a server in order to establish communications. It is
a JavaScript library and uses JSON notation for messages.

ShareJS [16] is a server-client FLOSS platform for collaborative
edition of JSON objects as well as plain text fields. It provides a client
API through a JavaScript library.

Goodow [17], is a recent FLOSS framework replicating the Google
Drive Real-Time API with additional clients for Android and iOS,
while providing its own server implementation.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº5

- 48 -

On the other hand, Google provides a Real-Time API as part of its
Google Drive SDK . It is a centralised (non-FLOSS) service handling
simple data structures and plain text.

In general, these solutions are highly centralised. Despite they
claim collaboration, users from different servers cannot work or share
content. Besides, they mostly provide concurrency control features
without added value services like storage and content management.
And all of them just allow collaborative edition of simple plain text
format.

III.	Re-engineering: technologies and tools

This section summarises the procedure followed to re-engineer and
build a generic Wave-based collaborative platform, together with the
technologies used. First, it introduces the software and technologies
that have been generalised, Apache Wave and Wave in a Box, and
afterwards the technologies used to develop and test the performed
extensions. The description of how and where the results are shared
and published conclude this section.

A.	 Assessment of Apache Wave & Wave in a Box
Wave in a Box is the FLOSS reference implementation of the

Apache Wave platform, which supports all former Google Wave
protocols and specifications [18] and includes both implementations
of the Server and the Client user interface. Most of its source code is
original from Google Wave and was provided by Google, although it
was complemented with parts developed by community contributors.
It enables real-time collaboration over rich-text conversations in a
federated infrastructure. It was designed to be an extensible platform
through the use of gadgets and robots.

The existing source code is written in Java and the Google Web
Toolkit (GWT) [19]. GWT is a FLOSS framework which allows to
write Java code and translate it to JavaScript in order to be used in a Web
browser. This approach is used to write all Wave components shared
between server and client. User interface components are developed
in GWT and they are strongly coupled to the Wave’s business logic.

The lack of technical documentation forced to perform a preliminary
extensive source code inspection, identifying main packages and
interfaces and developing text documentation and diagrams. It was
concluded that from a logical point of view, Wave concepts could be
reused for general purposes, and that technically the source code was
organised in layers properly decoupled.

B.	 Development & Testing frameworks
Both, server and client components of the Wave in a Box software

have been extended. In particular, extensions to the server’s storage
system have been added to support the NoSQL database MongoDB
[20] and some HTTP RESTful services have been also created. Part of
new source code in client components has been written avoiding GWT
dependencies in order to be reused in any Java runtime environment
without adaptations. On top of this code, the JavaScript client API has
been developed with some GWT specific code.

Concerning software testing, the JavaScript framework Jasmine [21]
was used in addition to existing Java unit tests. The test suite attacks
all JavaScript API functions in a web browser environment. These are
end-to-end tests where all components of the Wave architecture are
verified, from client API methods, to server’s storage routines.

C.	 Contributions
The development has been tracked and released in an open and

public source code repository [22]. It includes documentation and
different examples about how to use the API.

Besides, during the development process, several contributions
have been made to the Apache Wave FLOSS community, in the form
of source code patches, documentation and diagrams.

IV.	Generalising the Wave Federated Collaborative
Platform

This section shows the fundamentals of the Wave platform and how
they have been used to turn Wave into a general-purpose platform
unlike the former conversation-based one.

A.	 Original Wave Data Models & Architecture
This subsection describes how original Wave data models work

from a logical point of view. This allows further understanding of the
presented work.

Fig. 1. Apache Wave Architecture, including data model layers.

1)	 The Wave Content Model
There are three different logical data models in the original Wave

systems (Fig. 1). The Wave data model [23] is the basic level of data
abstraction in the system providing a basic storage entity, Documents,
and two aggregated entities: Wavelets and Waves.

Documents are XML documents where arbitrary data can be stored.
They are logically grouped in a Wavelet which provides access control
for the contained documents. Finally, Wavelets are grouped logically
in Waves. A Wave is basically a unique identifier -for a particular
domain- referencing a set of Wavelets which controls the access to a
group of XML Documents.

Fig. 2 Example of a Wavelet structure (Wave Data Model) representing a
wave conversation (Wave Conversational Data Model)

Regular Issue

- 49 -

The actual way to store these entities, and the Document’s XML in
particular, is through the historical set of changes performed to them.
These changes are represented with a special set of character-based
operations over a document: the Operational Transformations (OT) .

In the cases of having different users changing an entity at the same
time, the OT’s applied to the data entity through a special concurrency
control algorithm ensures a consistent state of the entity, among all
users, after all OT’s have been applied. The OT system is responsible
to implement such functionality. The implementation of the Wave Data
Model allows to react when changes are performed over these entities
thanks to this operation-based design.

2)	 The Abstract Data Model
In summary, the Wave Data Model enables only real-time

collaborative editing of structured text (XML). However, it was
convenient for the Wave system to handle non textual data as well. The
Abstract Data Model provides a set of basic data structures –maps, lists
and strings or Abstract Data Types (ADT)– which are represented as
XML within Documents. This way, these data structures can be used
by different users concurrently whereas they inherit the consistency
properties of the underlaying OT system. Besides, the data model
translates incoming OT’s from the underlying data model in meaningful
mutation events for data structures like “element is added”, “element
is removed”, etc.

3)	 The Conversational Data Model
On top of these two layers, the Conversational Data Model [24] is

placed. It provides the data entities and business logic of the original
Google Wave product, focused on conversations.

A conversation is handled by a Wavelet, and each message is stored
as a Document. The structure of messages is also stored in a Document
but using the Abstract Data model instead: the logical structure of
the thread can be seen as maps and lists of Documents’ identifiers.
The Conversational Data Model codifies the content’s type of each
Document within its identifier (Fig. 2).

These layers are deployed in a client-server architecture. The server
side or “Service Provider” provides mainly OT history storage, OT
system and federation control with other servers using the XMPP
protocol [25]. Additional services like indexing and robots rely on
the rest of already introduced data model layers. On the other hand,
client side is responsible of the application logic and the user interface,
therefore it handles all data layers as well.

The implementation of this architecture is a Java/GWT software
originally developed by Google. This technology allows to use
almost completely the same source code for all layers in both, server
and client modules. Java source code is translated to optimised
JavaScript by the GWT compiler. Just a few and specific parts tied
to the execution environment are different between server and client,
such as networking and random number generation. The server-client
communication between follows the Wave Client-Server Protocol.
It defines a set of operations and JSON data entities to exchange
Operational Transformations for Waves, Wavelets and Documents.

B.	 General-Purpose Collaboration: Generalising the Wave
Data Model & Architecture

Previous section outlined the original Wave’s data models and
architecture. This section introduces how they can be used in a generic
way thanks to the new Wave Content Model, and the Wave Content
API.

1)	 The Wave Content Model
The Wave Content Model is a new general-purpose data model

built on top of both existing Wave and Abstract Data Models. It
provides a more convenient set of data abstractions and relationships
to work with Abstract Data Types. This new data model allows to see
a Wavelet as a dynamic tree of nested data objects: maps, lists, text
strings and rich text documents. These objects are stored in different
Documents of the Wavelet whereas the new data model manages the
organization of them and their relationships among the Documents
properly (Fig. 3).

Fig. 3 Example of a Wavelet structure (Wave Data Model) representing a
collaborative data object (Wave Content Model)

The Wave Content Model is implemented as a class hierarchy (Fig.4)
controlling each possible data type –map, list, string and text– plus
a controller class for the whole Wavelet, following the Composition
Pattern [26].

Fig. 4 Class hierarchy implementing the Wave Content Model.

A data class instance, or data objects, handles one single underlaying
abstract data type instance over a single Document. New instances
are initially unhooked from any Wavelet, so they must be attached
to an existing parent instance. Attach process creates the underlying

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº5

- 50 -

substrate Document, the right Abstract Data Type handler and stores
the new Document identifier as reference in the parent instance. This
classes allow to register callback methods to be notified on model
mutations.

With this approach, Wavelets -and Waves- became generic and
dynamic data containers where multiple users can create and modify
a nested data structure at the same time ensuring its consistency over
the time.

 In comparison with the former architecture stack, in the presented
approach the Conversational Data Model has been removed and
replaced by the Wave Content Model. Of course, the existing user
interface layer is also removed (Fig. 5).

Fig. 5. New Apache Wave Architecture, including new content model

2)	 The Wave Content API
The new Wave Content Model allows to see Waves as real-time

collaborative data structures. However, additional effort is required to
expose this model to third-party applications in a handy manner.

According to the technology used in the Apache Wave
implementation, just new Java or GWT web applications could use
new content data model directly. With the aim of offering these new
capabilities to any web application, a JavaScript API has been built.

Although GWT eventually translates Java code into JavaScript,
this is not suitable to be consumed directly by non-GWT JavaScript
code in a web-browser environment due to the following facts (among
others): GWT-generated JavaScript, which is obfuscated by the
compiler, does not provide references to objects with suitable names;
GWT Exceptions do not flow out of the GWT code, so they must be
translated and adapted to external code properly.

Java Script Native Interface (JSNI) and Overlay Types are features
of GWT allowing to write arbitrary native JavaScript code integrated
transparently within Java code. These features have been used to
develop a native JavaScript layer which exposes functionality of
the GWT-generated objects of the Wave Content Model. This is an
implementation of the Proxy Pattern.

Additional functionality is also required in the JavaScript API. First,
users no longer will use the former user interface to get registered
or logged in. Therefore, the API provides replacement methods for
making HTTP calls to create and authenticate users.

Management of the Wave life cycle now is provided through the API
to clients. They can open or create Waves by calling API’s methods.
Moreover they can be aware of changes in the model registering
callback functions in the API.

3)	 Content Search Index
Clients are able to query Waves stored in the Server Provider thanks

to a new query service. Original Wave server implementation stores
Wavelets as a sequence of OT’s. This approach prevents to look into
actual data of Documents to perform operations, for example executing
search queries, regardless of the storage engine used.

A secondary storage is used now in order to provide a query service.
Anytime the Server Provider commits a change to the main storage,
an asynchronous indexing process takes care of the changed Wavelet:
a full view of its Wave Content Model is generated in memory and
a Visitor Pattern is used to transverse data objects generating an
equivalent JSON document.

This process is optimised in two different ways: first, the number
of times the indexing process runs is decreased by queuing committed
changes sequentially and processing them in groups according their
time closeness. Second, loading and transversing the full content model
in memory is avoided by pruning. Each received change references to
its target Document, which stores unequivocally one data object in
the data model. This information is used to skip data model branches
without changes in any of its data objects.

Finally, JSON documents are stored in the NoSQL database. The
API encapsulates the database query interface and filters queries
according to the current logged in user: a user cannot retrieve Wavelets
where she is not a participant.

V.	 Discussion

This paper introduces the first federated platform for real-time
collaboration available nowadays. However, using Wave involves
some issues, mainly due to the limitations of the source code and its
technologies.

There are several critiques concerning the complexity of the Wave
OT system regarding two main issues: the complexity of the Operational
Transformation system put in place [16] and the large length of the
source code with around 500 thousand lines [27]. These facts together
with the lack of good documentation causes the maintenance of the
source code to be a tough task, requiring highly skilled developers in
object-oriented programming with enough mathematical background.
However, any OT system is inherently complex. To design a flexible
and comprehensive set of operational transformations –such as
Wave’s– in order to provide an actually usable functionality is hard in
any case. Besides, to implement control algorithms is a hard task, even
if nowadays they are properly formalised.

Some existing OT implementations use a simpler approach. These
OT systems are generally based in the JSON language, having a smaller
set of OT operations just defined to operate at the language level. In
contrast, Wave’s OT system has significantly superior capabilities.
It includes business logic operations in the system, such as add and
remove participants to a Wavelet. But the most relevant features are
to include XML tags and text annotations as part of the OT language.
The first allows to handle any XML dialect, while the latter enables
contextual meta data over that XML. These characteristics are used
in the Wave’s rich text format, which, for example, allows to embed
arbitrary objects within the text, from images to widgets, just using
new XML tags for them.

Operation’s semantics and syntax of the introduced API follows the
same style of the Google Drive Real-Time API: starting from a root
map, new data objects must be created by a factory and then attached to
the existing data tree. On the other hand, JSON based OT systems work
seamlessly in JavaScript environments, allowing direct manipulation
of the data. It is hard to conclude which approach is more appropriated,
but the first seems more generic concerning the API implementation
in different programming languages, as it is not as tied to JavaScript.
Moreover, data structures of JSON documents and new Wavelet’s inner
structure are equivalent, so it would not be hard to develop adapters.
However, currently there is no actual data about the developers
preference, i.e. how comfortable are they with each approach.

Performance issues must be taken into account in the new Wave

Regular Issue

- 51 -

Content Model. The first consideration is whether the new changes
have a negative influence in the general performance of the platform
in comparison with the original architecture. Regarding the client, no
special impact in performance is expected as long as data objects of the
new content model are created in memory only when access to them
is required. On the server’s side, no changes have been done affecting
performance critical aspects of the OT system like in memory recreation
of Wavelets and delta-based storage. However, current design of the
JavaScript API duplicates some data structures of the underlaying data
model to simplify the implementation. Internal improvements in this
area could be performed, although they do not affect current or future
use of the API.

The GWT development framework is sometimes seen as a
disadvantage regarding efficiency and code complexity in comparison
with development of native JavaScript software with modern native
frameworks [28]. It is true that GWT was produced in a time when
JavaScript tools and frameworks were not as advanced as today.
However, it is a very stable and mature FLOSS project, and it is
supported by Google. Moreover, the GWT compiler generates highly
optimised code and it solves the issue of managing dual-language
applications.

Client-Server communications relies massively on WebSockets
[29] because changes in Wavelets are transmitted in both directions
continuously. Protocol implementation is provided by an embedded
Jetty HTTP server instance, a classic Servlet container which has been
improved to support new HTTP features recently. It might be more
efficient to use a non-blocking IO server [30] in order to improve vertical
scalability. In addition, to use an embedded Jetty instance, prevents the
deployment of the code into standard Java server containers.

Finally, it is necessary to assess the use of XMPP as a federated
communication protocol among servers. It has been almost a standard
for distributed communications in chat applications during more than
a decade. However, the previous adoption from big players, such
as Google and Facebook, has dropped. Moreover, it seems a heavy
protocol to be used in small devices, and to support new features
apart from chatting, especially in comparison with new decentralised
protocols .

VI.	Concluding Remarks and Future Work

A federated platform to develop web applications with real-time
collaborative editing capabilities has been presented in the previous
sections. It has been developed as a generalisation of the Apache Wave
platform, the FLOSS project formerly known as Google Wave.

Nowadays there is no other federated (or distributed) platform for
real-time collaboration of data and rich-text.

The provided API is a functional alternative to existing collaborative
platforms. It provides a full-stack of software ready to be deployed,
including functionalities only comparable with the proprietary Google
Drive Real-Time API. Additional features such as the participation
model, content storage and search index are part of the platform
whereas they are missed in the rest of OT systems.

The API is offered in JavaScript and it can be used in any Web
application. But thanks to the Java code base, it would be really easy to
have versions for Java and Android applications. In such case, it would
be an alternative to the lack of a Google Drive Real-Time API native
client for Android.

From a wider perspective, this work opens new challenges in the
context of decentralised collaboration:

In the introduced model, access and modification of content (and
its structure) is granted to all participants in a Wavelet. However, this
might not be enough for some sort of applications where read but not

write permissions could be required for some users, e.g. a participant’s
profile information should not be written by anyone else whereas it
must be readable by friend participants.

But also a fine-grain access control could be required beyond
the current per-document access control. For instance, in a content
Wavelet representing a poll, a user might be allowed to change her
vote, but not to change others participants votes.

Under some circumstances integrity of the data model should be
enforced, for instance allowing one and only one vote in the previous
example. Or in a list of chess moves, enforcing the order and correctness
of them.

Content Wavelets are highly flexible data entities for model
application where the inner structure allows to define parent-
child relationships of data elements. However, in any application,
relationships among Wavelets or among inner objects of different
Wavelets emerge naturally, so mechanisms to handle them must be
explored, e.g. typifying Wavelets, object identification, etc.

Furthermore, in a scenario where several applications make use of
the distributed data objects (for instance accessing profile information
of users), the use of standard formats for data representation would be
required. Technologies such as the Semantic Web [31] and Linked
Data [32] provide an example of how distributed data can be organised
and linked in a manner that allows further operations such as querying
in a decentralised environment.

Current trends in software are driven by the mobile ecosystem.
There, code and data are separated: apps running in devices, while
retrieving data from a remote storage. Nowadays, it is easier to consider
these apps managing data generated from different users and stored in
different remote servers but eventually combining them in the device.

This work shows the unexplored high potentials of Google’s original
development, in spite of its complexity and lack of documentation.
Thus, this work steps out engineering challenges for the reuse of
parts of Apache Wave. The result is a platform ready to explore new
challenges in decentralisation of data and services. We certainly hope
this work will pave the way for other researchers and developers.

Acknowledgment

This work was partially supported by the Framework programme
FP7-ICT-2013- 10 of the European Commission through project
P2Pvalue (grant no.: 610961).

References

[1]	 B. Leuf and W. Cunningham, The Wiki Way: Collaboration and Sharing
on the Internet. {Addison-Wesley Professional}, 2001.

[2]	 “Collaborative communities for everyone! - Wikia.” [Online]. Available:
http://www.wikia.com/Wikia.

[3]	 B. Berliner, “CVS II: Parallelizing software development,” USENIX
Association., pp. 341–352, 1990.

[4]	 Google Inc. “Google Docs.” [Online]. Available: https://docs.google.com.
[5]	 The Etherpad Foundation, “Etherpad.” [Online]. Available: http://

etherpad.org/.
[6]	 Sun, S. Xia, C. Sun, and D. Chen, “Operational Transformation for

Collaborative Word Processing,” in Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work, New York, NY,
USA, 2004, pp. 437–446.

[7]	 C. A. Yeung, I. Liccardi, K. Lu, O. Seneviratne, and T. Berners-lee,
“Decentralization: The future of online social networking,” presented
at the In W3C Workshop on the Future of Social Networking Position
Papers, 2009.

[8]	 C. A. Ellis and S. J. Gibbs, “Concurrency Control in Groupware Systems,”

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº5

- 52 -

in Proceedings of the 1989 ACM SIGMOD International Conference on
Management of Data, New York, NY, USA, 1989, pp. 399–407.

[9]	 “ACE - a collaborative editor.” [Online]. Available: http://sourceforge.net/
projects/ace/.

[10]	 A. Ferrate, Google Wave: Up and Running. O’Reilly Media, Inc., 2010.
[11]	 D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping, “High-latency,

Low-bandwidth Windowing in the Jupiter Collaboration System,” in
Proceedings of the 8th Annual ACM Symposium on User Interface and
Software Technology, New York, NY, USA, 1995, pp. 111–120.

[12]	 Baxter, A. and Bekmann, J. and Berlin, D. and Gregorio, J. and Lassen,
S. and Thorogood, S., “Google Wave Federation Protocol Over XMPP.”
Google Inc., 2009.

[13]	 G. Trapani and A. Pash, The Complete Guide to Google Wave. 3ones Inc,
2010.

[14]	 “Apache Wave Incubating.” [Online]. Available: http://incubator.apache.
org/wave/.

[15]	 Mozilla Labs, “TogetherJS.” [Online]. Available: https://togetherjs.com/.
[16]	 J. Gentle, “ShareJS,” Nov-2011. [Online]. Available: http://sharejs.org/.
[17]	 T. Chuanwu “Goodow - Google Docs–style collaboration via the use of

operational transforms,” GitHub. [Online]. Available: https://github.com/
goodow.

[18]	 “Google Wave Protocol.” [Online]. Available: http://www.waveprotocol.
org/.

[19]	 R. Dewsbury, Google Web Toolkit Applications. Pearson Education, 2007.
[20]	 K. Chodorow, MongoDB: The Definitive Guide. O’Reilly Media, Inc.,

2013.
[21]	 “Jasmine: Behavior-Driven JavaScript.” [Online]. Available: http://

jasmine.github.io/.
[22]	 P. Ojanguren, “SwellRT, a real-time federated collaboration framework.”

[Online]. Available: https://github.com/P2Pvalue/swellrt.
[23]	 A. North, “Wave model deep dive,” 2010. [Online]. Available: https://

cwiki.apache.org/confluence/display/WAVE/Wave+Summit+Talks
[24]	 G. North, A. J., “Google Wave Conversation Model,” Oct-2009. [Online].

Available:
[25]	 http://wave-protocol.googlecode.com/hg/spec/conversation/convspec.

html
[26]	 P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):

Core,” RFC Editor, RFC6120, Mar. 2011.
[27]	 E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software Pearson Education,
1994.

[28]	 “The Apache Wave (Incubating) Open Source Project on Open Hub.”
[Online]. Available: https://www.openhub.net/p/apache_wave.

[29]	 T. Burnham, CoffeeScript: Accelerated JavaScript Development.
Pragmatic Bookshelf, 2011.

[30]	 I. Fette and A. Melnikov, “The WebSocket Protocol,” RFC Editor,
RFC6455, Dec. 2011.

[31]	 Gregor Roth, “Architecture of a Highly Scalable NIO-Based Server”
2007. [Online]. Available: https://today.java.net/pub/a/today/2007/02/13/
architecture-of-highly-scalable-nio-server.html.

[32]	 T. Berners-Lee, J. Ora, L. Ora and others, “The semantic web,” Scientific
american, vol. 284, no. 5, pp. 28–37, 2001.

[33]	 C. Bizer, T. Heath and T. Berners-Lee, “Linked data-the story so far,”
Semantic Services, Interoperability and Web Applications: Emerging
Concepts, pp. 205–227, 2009.

Pablo Ojanguren (Oviedo, 1979) holds a Engineering
degree in Computer Science (2003) and a MSc in Software
Engineering (2006) from the Universidad de Oviedo
(Spain). It is also a certified Project Manager Professional.
He is currently senior software engineer and researcher in
the EU-funded FP7 P2Pvalue project on the development
of webtools for Commons-based peer production. He
has been running different IT positions in international

companies as Accenture, BBVA and YellowPages Group with special focus
in content management systems, enterprise integration patterns and IT project
management. Pablo’s main research area is decentralised architectures in social
issues as commons-based peer production, peer-to-peer participation, digital
democracy and data privacy.

Antonio Tenorio-Fornés (Madrid) holds an Engineers’s
Degree on Computer Science (2012) and a Master in
Computer Science Research (2013) by the Complutense
University of Madrid (Spain). He is currently doing his
PhD research on democracy tools for Commons-based Peer
Production Communities and working as researcher and
engineer in the GRASIA research group of Complutense
University of Madrid as part of the EU-funded FP7

P2Pvalue project. His research interests include decentralized technologies,
Commons-based Peer Production communities, Artificial Intelligence, Multi-
agent Systems, Agent-Based Social Simulation and declarative programing
languages among others. Antonio Tenorio-Fornés (Madrid) holds an Engineers’s
Degree on Computer Science (2012) and a Master in Computer Science Research
(2013) by the Complutense University of Madrid (Spain). He is currently doing
his PhD research on democracy tools for Commons-based Peer Production
Communities and working as researcher and engineer in the GRASIA research
group of Complutense University of Madrid as part of the EU-funded FP7
P2Pvalue project. His research interests include decentralized technologies,
Commons-based Peer Production communities, Artificial Intelligence, Multi-
agent Systems, Agent-Based Social Simulation and declarative programing
languages among others.

Samer Hassan (Madrid, 1982) holds an Engineering
degree in Computer Science (2006), a MSc in Artificial
Intelligence (2007) and a PhD in Social Simulation (2010)
from the Universidad Complutense de Madrid (Spain),
together with a Diploma in Political Science (2006) from the
Spanish National Distance Education University (UNED,
Spain). He is currently Fellow at the Berkman Center for
Internet & Society (Harvard University, US) and Assistant

Professor at the Universidad Complutense de Madrid (Spain). He has carried
out research in distributed systems, social simulation and artificial intelligence
from positions in the University of Surrey (UK) and the American University of
Science & Technology (Lebanon). Coming from a multidisciplinary background
in Computer Science and Social Sciences, he has more than 45 publications in
those fields. Engaged in free/open source projects, he co-founded the Comunes
Nonprofit and the Move Commons webtool project, and has been accredited as
grassroots facilitator. He’s involved as UCM Principal Investigator in the EU-
funded FP7 P2Pvalue project on the development of webtools for Commons-
based peer production. His research interests include Commons-based peer
production, online communities, distributed architectures, social movements &
cyberethics. Dr Hassan currently belongs to the GRASIA research group, the
Berkman Center for Internet and Society, the Editorial Board of the Society for
Modelling & Simulation newsletter, and has belonged to the European Social
Simulation Association and the Center for Research in Social Simulation. He
has been member of Scientific or Organising Committees of 45 international
conferences.

