
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº5

- 6 - DOI: 10.9781/ijimai.2015.351

Abstract — Machine learning is one of the most important
subfields of computer science and can be used to solve a variety
of interesting artificial intelligence problems. There are different
languages, framework and tools to define the data needed to
solve machine learning-based problems. However, there is a great
number of very diverse alternatives which makes it difficult the
intercommunication, portability and re-usability of the definitions,
designs or algorithms that any developer may create. In this paper,
we take the first step towards a language and a development
environment independent of the underlying technologies, allowing
developers to design solutions to solve machine learning-based
problems in a simple and fast way, automatically generating code
for other technologies. That can be considered a transparent bridge
among current technologies. We rely on Model-Driven Engineering
approach, focusing on the creation of models to abstract the
definition of artifacts from the underlying technologies.

Keywords — Domain-Specific Language, Model-Driven
Engineering, Integrated Development Environment, Machine
Learning, Artificial Intelligence, Xtext

I.	 Introduction

Artificial Intelligence (AI) refers to the “intelligence” provided
by software included in some machines [1]. It is also a field

of study commonly defined as the design of intelligent agents,
which perceives their environment and takes actions that maximize
their possibility of success [2]. The general problem of creating
intelligence can be divided into different sub problems: 1) deduction
and reasoning; 2) knowledge representation; 3) planning; 4) social
intelligence; 5) natural language processing; 6) perception; 7) motion
and manipulation; 8) long-term goals; or 9) machine learning.

Machine learning is one of the most important applications
of artificial intelligence that evolved from the study of pattern
recognition and computational learning theory. The goal is to create
and study algorithms that are capable of leaning from data and make
predictions on its basis [3].

Designing and implementing algorithms for machine learning is
not a trivial tasks. M. Mitchell stated that a computer program is said
to learn from experience E with respect to some class of tasks T and
performance P, if its performance with tasks T, as measured by P, is
improved with experience E [4].

In addition, machine learning is closely related to many other
areas such as computational statistics for prediction-making or
mathematical optimization, making the number of people involved
in using related techniques very diverse with different backgrounds.
Thus, there is a large number of solutions using different approaches
to deal with machine learning-based problems. For example, Encog
is a machine learning framework available for Java, .NET and C++

programmers [5], and Weka is a workbench that contains a group
of graphical tools for data analysis and predictive modeling [6].
Moreover, there are also used General-Purpose Languages (GPL)
such as Python, that is suitable for students and is one of the most
popular introductory programming languages [7]. On the other hand,
Domain-Specific Languages (DSL) [8] such as R, are also used for
machine learning tasks [9] and their relevance continue growing.

However, although there is a great amount of solutions to deal with
machine learning-based problems, all of them seem to be difficult to
be used by no-experts programmers or require users to learn different
technologies or applications that make the knowledge they have
about a tool or platform virtually useless when they need to work
with another one, when circumstances require it. This is even more
problematic when the solution should be done programmatically for
better control and adaptation.

Hence, different tools and software development approaches
continuously appear in the software engineering field, trying to
abstract the development from specific platforms or technologies
(e.g., virtual machines, APIs, frameworks, etc.). It is widely
considered that the Model-Driven Engineering (MDE) approach,
with which the level of abstraction of developments is increased
through the use of models, it is a step forward in the development
of software [10], since developments are being benefited from the
advantages provided by MDE (e.g., in García-Díaz et al. [11] food
traceability systems for different clients are created in a quick and
dynamic way).

MDE is based on the use of models, which conform to a single
domain-based metamodel, which in turn are defined based on a
common meta-metamodel, root of all the elements of any software
development. That idea makes up the architecture of four layers
defined in the Model-Driven Architecture (MDA) standard [12]. The
common base allows for a wide range of supported environments
and tools working together. As a result, if a metamodel for a specific
knowledge domain is defined (e.g., food traceability or machine
learning), it would be possible to create a DSL based on MDE tools
[13], designed only to define the important specific items (e.g., food
manufacturing processes or features of neural networks). Internally,
the use of standard-based modeling technologies allows direct and
automatic transformations to different formats or platforms defined
by different software manufacturers. There are a variety of research
in MDE that serve to advance in the systematic use of DSLs. For
example, Cueva et al. work on bringing together the MDE approach
and the Internet of Things field creating languages for automatic
vehicle data capture [14][15] or García.-Díaz et al. work on
improvement match algorithms for performing further operations
with models [16].

The main aim of this paper is to take the first step towards the
creation of a standard-based platform for defining and abstracting
machine learning-based solutions in a simple and common way.
Internally, definitions are automatically transformed into different

Towards a standard-based domain-specific platform
to solve machine learning-based problems

Vicente García-Díaz, Jordán Pascual Espada, B. Cristina Pelayo G-Bustelo, and Juan Manuel Cueva Lovelle

Department of Computer Science, University of Oviedo, Oviedo, Spain

Regular Issue

- 7 -

languages or platforms. Thus, the specific goals are:
1. Identify the basic elements that a representation of a language
for solving machine learning-based problems must possess.

2. Create a DSL to define machine learning-based solutions. We
call it AiDSL.

3. Allow automatic transformation of definitions made with
AiDSL to any other platform or system.

4. Provide an Integrated Development Environment (IDE) to
work with AiDSL. We call it AiIDE.

5. Study the advantages of the proposal by a comparison with
other alternatives.

The remainder of this paper is structured as follows: in Section 2,
we present a description of the relevant state of the art (goal [1]); in
Section 3, we describe our proposal (goals [2-4]); in Section 4, we
discuss a comparison of the proposal with other alternatives (goal
[5]) and finally, in Section 5, we indicate our conclusions and future
work to be done.

II.	 Background

There are a large number of approaches to deal with machine
learning-based problems such as: 1) decision tree learning; 2)
association rule learning; 3) artificial neural networks; 4) inductive
logic programming; 5) support vector machines; 6) clustering; 7)
Bayesian networks; 8) reinforcement learning; 9) representation
learning; 10) similarity and metric learning; 10) sparse dictionary
learning; or 11) generic algorithms.

In this work we focus on Artificial Neural Networks (ANN), that
have been used to solve a great variety of problems that are difficult
to solve using other techniques [17]. They can be defined as statistical
learning models inspired by biological neural networks. Typically,
there are presented as collections of interconnected neurons, sending
messages each other. Each neuron has numeric weights that can be set
using different algorithms, being them adaptive to inputs, or what it is
the same, allowing them to learn.

Regarding ANNs, the Feedforward neural network was the first
and the simplest type of ANN formulated. In such a type of network
the information moves only in one direction. In this work, we focus
on the Feedforward artificial neural network, although there are some
other such as Elman Neural Network or the Jordan Neural Network,
interesting depending on the type of problem to be solved.

Fig. 1 shows a small example of an artificial neural network, which
can be decomposed into different layers, containing each a specific
number of neurons with similar properties.
•	 Input layer. Typically it has one neuron for each attribute that the

network will use for obtaining different kinds of solutions (e.g.,
classification, regression or clustering). In the example, I1 and I2
are input neurons included in the input layer.

•	 Output layer. It provides the output after all previous layers have
processed the input. In the example, O1 is the only output neuron
that is included in the output layer.

•	 Hidden layers. They are inserted between input and output layers
and are used to better produce the expected output for the given
input readjusting weights. In the example, H1 and H2 are hidden
neurons contained in the only hidden layer shown.

In addition, there are also bias neurons that can be inserted in the
input and hidden layers as desired (B1 and B2 in the example). They
are very similar to the hidden neurons but are a special kind that allow
the neural network to learn patterns more effectively, always returning
the maximum value, without receiving any input.

I1

I2

B1

H1

H2

B2

O1

Fig 1. Artificial neural network (example)

From the point of view of classification, there are typically three
broad categories into machine learning: 1) supervised learning. The
algorithm is trained with example inputs and outputs. For example,
Carneiro proposes a method for semantic image annotation and
retrieval [18]; 2) unsupervised learning. The algorithm is not trained
with examples but other techniques such as generic algorithms help to
find the correct solution. For example, Kattan et al. predict the position
of any particular target event in a time series [19]; and 3) reinforcement
learning. The algorithm learns its behaviour based on feedback from
the environment. For example, Gosavi uses reinforcement learning for
control optimization [20]. There can be other definitions such as semi-
supervised learning, learning to learn, developmental learning and
even other classifications like for example depending on the expected
kind of output.

ANNs are linked to a large amount of different type of scenarios.
For example: 1) any kind of control system [21]; 2) autonomous
navigation of robots [22]; 3) pattern recognition [23]; 4) forecasting
[24]; or estimation of heating loads of buildings [25].

Those ANNs-based problems can be formulated using different
technologies such as:
•	 Encog for Java, .NET or C++ [5], supporting different algorithms

such as hidden Markov Models, vector machines, Bayesian
networks and neural networks.

•	 AForge.NET for .NET [26], designed for developers and researchers
in the fields of computer vision and artificial intelligence.

•	 The SHOGUN machine learning toolbox [27], with interfaces
for MATLAB, R, Octave and Python, apart from a stand-alone
command line interface.

•	 Apache Mahout [28], providing free implementations of scalable
machine learning algorithms, using Java libraries for common
operations.

•	 Many others such as Weka [6], Spark MLlib or ConvNetJS.
The main problem is that there are not bridges among the previous

technologies, so users are highly dependent on the underlying
technology. In addition, when programming is needed, software
libraries that are provided does not have a high level of abstraction
since they usually are designed for GPLs with no semantics in the
language linked to the type of problems to be solved. That forces users
to have both high programming and machine learning skills to make
use of them.

III.	Overview of the System

To design the prototype, we used the MDE development approach,
raising the level of abstraction of software engineering. Specifically,
we have used the tools built on the Eclipse Modeling Project (EMP)
[29], offering one of the most accepted implementations of the
standards promoted by the Object Management Group (OMG) [30].

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº5

- 8 -

OMG is the organization that has driven the development of MDE
through the creation of the set of standards enclosed in the Model-
Driven Architecture (MDA) [12] specification, for the effective and
efficient work under the MDE paradigm. It is usually carried out by
creating DSLs tied to a specific domain of knowledge and generating
artifacts for different platforms and manufactures.

Decision in favor of a new DSL is usually not easy because it is
much less expensive (both in time and cost) to adopt an existing DSL
if available or even to use a GPL such as Java or C#. For that, there
are mainly only two reasons why it is worth creating a new DSL [31]:
1) improved software economics, giving some authors as a reference
point three developments [32] to obtain a positive return on investment;
and 2) allow that people with less domain and programming expertise
to develop software, even end-users with some domain, but no
programming expertise [33][34].

Since our goals are compatible with both criteria, we have created
a new DSL based on common elements used to describe the structural
part of a feedforward neural network. To that end, we have used the
Xtext framework [35], which allows the creation of both GPLs and
DSLs in a relatively easy way [36]. From a grammar and some other
definitions, it is possible, for example, to get a working parser and
linker and also a complete Eclipse-based Integrated Development
Environment [37]. Xtext also provides several mechanisms through
which you can configure different aspects of languages such as
validations of code, syntax highlighting, proposals to developers, code
formatting or even generating artifacts through programs implemented
with the programming languages defined with Xtext.

A.	 AiDSL
Next, there is a snippet of the context-free Xtext grammar used as

the basis of the AiDSL language.

AI:
	 neuralNetworks+=NeuralNetwork*;
	
NeuralNetwork:
	 “neuralNetwork” name=ID “{“
		 “neurons” “{“
			 “input” “{“
				 inputLayer = InputLayer
		 	 “}”
			 “hidden” “{“
				 hiddenLayer = HiddenLayer
			 “}”
			 “output” “{“
				 outputLayer = OutputLayer
			 “}”
		 “}”
		 “training” “{“
			 “input:” trainingInput = FloatsColection
			 “output:” trainingOutput = FloatsColection
			 (“type:” trainingType = TrainingType)?
(“errorThreshold:” trainingErrorThreshold = Float)?
			 (“result:” trainingResult = Result)?
		 “}”
		 “data” “{“
			 “input:” dataInput = FloatsColection	
			 (“result:” dataResult = Result)?
		 “}”
	 “}”
;

InputLayer:
	 “size:” size = INT
	 bias ?= “bias”?
;

HiddenLayer:
	 “size:” size = INT
	 bias ?= “bias”?
	 (“activation:” activation = Activation)?
;

OutputLayer:
	 “size:” size = INT
	 (“activation:” activation = Activation)?
;

enum Activation:
	 BiPolar |
	 Competitive |
	 HyperbolicTangent |
	 Linear |
	 LOG |
	 Sigmoid |
	 SoftMax
;

enum TrainingType:
	 Backpropagation |
	 QuickPropagation = “QPROP”|
	 LevenbergMarquardt = “LMA”|
	 ManhattanUpdateRule |
	 ResilentPropagation = “RPROG” |
	 ScaledConjugateGradient = “SCG”
;

FloatsColection: (‘[’ Floats ‘]’)+;
Floats: Float(‘,’Float)*;
Float: INT(‘.’INT)?;

enum Result:
	 Console |
	 None
;

With this grammar, neural networks can be created indicating
information about the input, the hidden and the output layers (e.g.,
number of neurons, presence of bias neurons and the activation
mode). Activation functions are attached to layers and are needed to
scale data output from a layer. There are different activation functions
available (users can select among different functions depending on
the case: bipolar, competitive, hyperbolic tangent, linear, log, sigmoid
or softmax). Depending on the selection, network behavior will be
different. As we focus on supervised learning, we define the way
users can introduce training data with inputs and expected outputs and
the algorithm used for training the system (Back propagation, Quick
propagation, Levenberg Marquardt, Manhattan update rule, Resilent
propagation or Scaled conjugated gradient), also depending on each
particular problem. More information about the theoretical basis for
designing neural networks could be found for example in Haykin [38].

The Xtext-based grammar is transformed internally into an ANTLR
grammar [39] to implement the lexer (lexical analysis) and the parser
(syntactic analysis) that is used when a programming language is being
defined. In addition, it also generates all the necessary infrastructure
to create the Abstract Syntax Tree (AST) to perform a semantic
analysis on the language elements. The iteration through the tree is
performed using model-based technologies, particularly the Eclipse
Modeling Framework [40], which serves to ensure interoperability of
the generated DSL with many other model-based existing tools such as
the tools defined in the Eclipse Modeling Project [29] to help improve
software development productivity.

The definition of such a grammar leads to a metamodel for the
domain that is automatically generated. This metamodel makes
programs that are made based on it to follow a formal definition that
allows to use any tool that is compatible with all standards promoted by

Regular Issue

- 9 -

the MDA such as interoperability, reusability and portability, opening
a wide range of possibilities. Thus, every time a new program with
AiDSL is created, a model that conforms to the proposed metamodel
is instantiated, following its rules and offering a formalism that makes
it very easy to perform different tasks such as validation, storing or
generation of artifacts. The rules are defined in general terms based on
the metamodel of the language, not for each individual case, that is,
not for each model obtained during the development, which facilitates
the process.

B.	 Transformations from AiDSL to other technologies
The code below shows a fragment of the template that is used to

generate artifacts from any of the models defined using AiDSL, based
on its grammar. In this example, programmed with the Xtend language,
the generation is focused on the Encog machine learning framework [5]
but with other templates, code for other platforms could be generated
without further changes. In addition, it could be possible to directly
interpret models without the need of focusing on any platform. The idea
of this approach is to generate from a model, easily and automatically,
the code for different architectures or platforms (it would only be
necessary to add new templates). That would be a key step to benefit
from all the advantages of integration and reuse offered by the MDE
approach (e.g., the use of common repositories and version control
systems for models).

@SuppressWarnings(“unused”)
public class «n.name.toFirstUpper» {
	 public static double trainingInput[][] =
«n.trainingInput.floatsColection»;
	 public static double trainingOutput[][] =
«n.trainingOutput.floatsColection»;
	 public static double dataInput[][] =
«n.dataInput.floatsColection»;
	
	 public void run() {
		 BasicNetwork network = new BasicNetwork();
		 network.addLayer(new BasicLayer(null, «IF
n.inputLayer.bias == true»true«ELSE»false«ENDIF»,
«n.inputLayer.size»));
		 network.addLayer(new BasicLayer(new «n.hiddenLayer.
activation.toString.activation»(), «IF n.hiddenLayer.bias
== true»true«ELSE»false«ENDIF», «n.hiddenLayer.size»));
		 network.addLayer(new BasicLayer(new «n.outputLayer.
activation.toString.activation»(), false, «n.outputLayer.
size»));
		 network.getStructure().finalizeStructure();
		 network.reset();

		 MLDataSet trainingSet = new
BasicMLDataSet(trainingInput, trainingOutput);
		 «trainingType(n.trainingType)»

		 int epoch = 1;
		 do {
			 train.iteration();
			 «IF n.trainingResult == Result.CONSOLE»
			 System.out.println(“Epoch #” + epoch + “ Error:”
+ train.getError());
			 «ENDIF»
			 epoch++;
		 } while(train.getError() >
«n.trainingErrorThreshold»);
		 train.finishTraining();
		
		 MLDataSet dataSet = new BasicMLDataSet(dataInput,
null);
		 «IF n.dataResult == Result.CONSOLE»
		 System.out.println(“Neural Network Results:”);
		 «ENDIF»
		 for(MLDataPair pair: dataSet) {

			 final MLData output = network.compute(pair.
getInput());
			 «IF n.dataResult == Result.CONSOLE»
			 System.out.println(pair.getInput() +
					 “ => actual=” + output);
			 «ENDIF»
		 }
		
		 Encog.getInstance().shutdown();
	 }
}
	 ‘’’

C.	 AiIDE
Based on the Xtext architecture, some of the features included in the

development environment called AiIDE are:
•	 Custom syntax-highlighting to distinguish the different elements of

the language (e.g., keywords, comments or variables). This is done
by implementing the Xtext interfaces IHighlightingConfiguration
and ISemanticHighlightingCalculator.

•	 Content assistant to help the developer to write code faster and
more efficiently through the use of the auto-complete functionality
(extending the TerminalsProposalProvider class).

•	 Static validation of the language elements to detect syntactic and
semantic issues (extending the AbstractDeclarativeValidator class).

•	 Suggestions for fixing errors or problems identified in the code
(extending the DefaultQuickfixProvider class).

•	 Templates that allow developers to reduce the learning curve for
typical operations.

•	 Formatting the code through a feature called code beautifier to
distribute it properly and promote its maintenance (extending the
AbstractDeclarativeFormatter class).

•	 Outline view fully configurable to both the elements that
appear and text or icons attached to them (extending the
DefaultObjectLabelProvider class).

Fig. 2. AiDE working

Fig. 2 is a screenshot of the environment when a model is being
created. It can be seen different features. For example, the syntax-
highlighting for different elements (e.g., neurons, bias, training,
etc.), the static validation marking a result type as not valid because

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº5

- 10 -

TABLE 1
Guidelines for a better quality and a better acceptance among its users

Guideline Accomplishment
Language purpose
Identify language uses early The language is used mainly for documentation of knowledge and code generation

Ask questions about uses Any person with interest in defining neural networks will be able to model with the language

Make your language consistent [42] It is consistent with the sole idea of defining and creating neural networks at this point
Language realization

Decide carefully whether to use
graphical or textual realization

Textual realization based on the advantages noted by Groenniger et al. [43]: 1) need of less space to display the same
information; 2) more efficient creation of code; 3) easier integration with other languages; 4) more speed and quality of the
formatting; 5) platform and tool independency; and 6) better version control support. Besides, graphical realizations provide
a better overview and ease the understanding of models [41], but in a very close and specific domain like neural networks, we
believe that the advantages of textual languages are more important

Compose existing languages where
possible

Instead of starting from scratch, we have used the entire ecosystem of tools provided by the Eclipse Modeling Project,
specifically Xtext, a DSL to define other DSLs, which relies heavily on the use of the Xtend language, an extension of the Java
language, primarily intended to support the creation of DSLs (e.g., validations and code generation)

Reuse existing language definitions To create AiDSL we have used the core grammar of Xtext as a basis to avoid redefining elements already defined previously

Reuse existing type systems Related to the previous point, we have reused the core data types defined by the creators of Xtext with the aim of reusing the
existing knowledge

Language content
Reflect only the necessary domain
concepts It only contains the basic elements needed to generate code in the different target formats, so no extra domain concept is added

Keep it simple With a small number of elements, simple syntax and reduced domain of knowledge, we think that the language is easier than
other alternatives. The quantitative analysis also suggests the same idea

Avoid unnecessary generality Due to the close domain of the language, we did not include the generalization concept, meeting with the principle of
designing only what is necessary

Limit the number of language
elements The language is small, having only 13 domain-specific keywords (e.g., Java has 50 generic keywords and C# even more)

Avoid conceptual redundancy Each fact can only be described in a unique way, avoiding redundancy

Avoid inefficient language
elements

Each element is needed for clarity and used with the only purpose of allowing the generation of the final code, so there are no
inefficient language elements

Concrete syntax
Adopt existing notations domain
experts use [44] Neural networks are usually defined using a graph-based structure with inputs, outputs an intermediate nodes or states

Use descriptive notations The language has a small number of keywords with syntax highlighting and code completion support. In addition, frequently-
used symbols in other languages such as =, { or } maintain their semantics

Make elements distinguishable Keywords, different syntax highlighting and an outline view are used to make elements distinguishable

Use syntactic sugar appropriately We avoid syntactic sugar since we think that in a small DSL expressing the same concepts in different ways can be
counterproductive, confusing users and hindering validation and code generation unnecessarily

Permit comments [45] Support for common types of comments: single-line comments (//) and multi-line comments (/*..*/)

Provide organizational structures
for models

Organizational structures such as packages are important for complex systems. However, to keep the language simple, we
intend to have the definition of the set of neural networks in the same organizational structure

Balance compactness and
comprehensibility

The quantitative analysis suggests that this approach may require less elements than other approaches. However, since it is a
DSL with concrete semantics for the domain, it is even more comprehensible

Use the same style everywhere All the elements of the language have the same look-and-feel and we do not embed any external language that can difficult the
understanding of the language by using another syntax

Identify usage conventions Based on an ANTLR grammar we define typical usage conventions including notation of identifiers, order of elements or type
of comments

Abstract syntax

Align abstract and concrete syntax

We took into account the three principles mentioned in Karsai et al. [41]: 1) elements that differ in the concrete syntax also
have different abstract notations (e.g., input layer and type of learning are based on different metaclasses); 2) elements that
have a similar meaning can be internally presented by reusing concepts of the abstract syntax (e.g., the FloatsColection rule for
indicating inputs and outputs has been created using two int values along with other literals such as “[“, “]” or “.”); and 3) the
abstract notation should not depend on the context an element is used but only on the element itself

Prefer layout which does not
affect translation from concrete to
abstract syntax

To simplify the usage of the DSL, the layout of the models does not affect the semantics. For example, modelers can use tabs,
spaces or line breaks whenever they want. However AiIDE provides the feature called code beautifier, also provided by some
environments ​​to automatically place the language elements in a way easily understandable for most potential users

Enable modularity [46] It is possible to decompose the code into smaller files, referencing them from other files. However, for this small language, we
think that it is not necessary and it may unnecessarily increase the difficulty of use

Introduce interfaces Interfaces are an important feature in complex systems, increasing flexibility and maintenance. However, we did not need
them in our DSL because it is a simple declarative language

Regular Issue

- 11 -

instead of Console, the programmer typed Consoles as the way to
show the output, and the outline view showing a summary of the
elements that are being used (in the example just a neural network
inside the file).

In addition, it is possible to perform other customizations such as
specifying the scope of the variables of the language. Thus, the AiIDE
is a full-fledged development environment integrated in the Eclipse
platform with the resulting advantages it provides (e.g., well-known
and proven platform for developers, large amount of tools and plug-ins,
open environment, etc.).

IV.	Evaluation

The sections below are dedicated to a qualitative and quantitative
study to show the characteristics of AiIDE and AiDSL, justifying the
design and the need for its creation.

A.	 Qualitative analysis
To achieve a better quality of the language and the environment

design and a better acceptance among its users, Karsai et al. [41]
have proposed some guidelines largely based on their experience in
developing languages as well as relying on existing guidelines on
programming and modeling languages. Table 1 serves to verify that
these guidelines are met.

B.	 Quantitative analysis
In this section we briefly evaluate the AiDSL language. We obtain a

quantitative measurement that allows us to evaluate the main objective
of our proposal; simplify and make more agile the definition of machine
learning-based solutions.

In this first step of the development we are going to do a brief
comparison between the definitions of two different neural networks
using both AiDSL and the Encog framework. Since with AiDSL it
is possible to automatically generate code for Encog and any other
technology, if the syntax used by AiDSL is more compact, then it can
clearly be seen as advantageous over other languages or frameworks.
The measured aspects in the code and the structure are the ones below:
•	 Code lines: it refers to the number of lines of information needed to

define the neural networks in each case.
•	 Words: number of words used.
•	 Characters: number of characters, spaces included.

Fig. 3. Comparing AiDSL and Encog working with two neural networks

In the obtained results of the analysis (Fig. 3), we can observe that
with AiDSL we require much less code lines (56 vs 102), words (180
vs 549) and characters (996 vs 3895) to define the same information
than with the Encog framework. For the measurements, we defined two

neural networks with a number of input, hidden and output neurons,
activation method, training information and type of output expected.
After we defined it with AiDSL the AiIDE automatically generated
the code that should be necessary if we have worked directly with the
Encog framework.

V.	 Conclusions and Future Work

In this paper we have presented the first version of a language for
defining neural networks (AiDSL) and a development environment to
facilitate working with those networks (AiIDE). This has been done by
identifying basic elements that are useful to define the important aspect
of any artificial neural network. In addition, we have defined mappings
for transforming models made with AiDSL to the code that should be
used if we worked with the Encog framework instead, and created the
basis to do the same with other different popular frameworks (e.g.,
Weka), which favors the development and increases productivity and
interoperability among systems. Finally, it the use of AiDSL through
the AiIDE is easier than the manual and specific handling of other
frameworks with identical purposes. Of course, both AiDSL and
AiIDE are prototypes with limited scope and popular frameworks such
as Encog or Weka offer many more features.

From the point of view of computer science, the focus of this
paper could be set embedded in this category: Artificial Intelligence →
Machine Learning → Neural Network → Feedforward Neural Network
→ Supervised learning. Further works will focus on other areas while
they will delve into supervised learning.

Future work will be to improve and adapt both AiIDE and AiDSL
with new frameworks and features to define neural networks. Finally,
we will perform a usability study with real users for quantifying how
simple, easy and intuitive is our proposal for them. The idea is to work
with people with different profiles and ask them to define several
neural networks using different techniques. That way, we will observe,
among other things, the efficiency, the learning curve and the number
of errors that are performed during the tasks.

References

[1]	 S. Russell, P. Norvig, and A. Intelligence, “A modern approach,” Artif.
Intell. Prentice-Hall, Egnlewood Cliffs, vol. 25, 1995.

[2]	 D. Poole, A. Mackworth, and R. Goebel, Computational Intelligence: A
Logical Approach. Oxford, UK: Oxford University Press, 1997.

[3]	 J. G. Carbonell, R. S. Michalski, and T. M. Mitchell, “An overview of
machine learning,” in Machine learning, Springer, 1983, pp. 3–23.

[4]	 T. M. Mitchell, “Machine learning. WCB.” McGraw-Hill Boston, MA:,
1997.

[5]	 H. Jeff, “Programming Neural Networks with Encog3 in Java,” 2011.
[6]	 G. Holmes, A. Donkin, and I. H. Witten, “Weka: A machine learning

workbench,” in Intelligent Information Systems, 1994. Proceedings of
the 1994 Second Australian and New Zealand Conference on, 1994, pp.
357–361.

[7]	 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and others, “Scikit-
learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12, pp.
2825–2830, 2011.

[8]	 A. Van Deursen, P. Klint, and J. Visser, “Domain-Specific Languages: An
Annotated Bibliography.,” Sigplan Not., vol. 35, no. 6, pp. 26–36, 2000.

[9]	 B. Lantz, Machine learning with R. Packt Publishing Ltd, 2013.
[10]	 S. Kent, “Model driven engineering,” in Integrated Formal Methods,

2002, pp. 286–298.
[11]	 V. García-Díaz, J. Tolosa, B. G-Bustelo, E. Palacios-González, Ó.

Sanjuan-Martínez, and R. Crespo, “TALISMAN MDE Framework: An
Architecture for Intelligent Model-Driven Engineering,” in Distributed
Computing Artificial Intelligence Bioinformatics Soft Computing and
Ambient Assisted Living, vol. 5518, S. Omatu, M. Rocha, J. Bravo, F.
Fernández, E. Corchado, A. Bustillo, and J. Corchado, Eds. Springer

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº5

- 12 -

Berlin / Heidelberg, 2009, pp. 299–306.
[12]	 S. J. Mellor, K. Scott, A. Uhl, and D. Weise, “Model-driven architecture,”

in Advances in Object-Oriented Information Systems, Springer, 2002, pp.
290–297.

[13]	 E. P. González, H. F. Fernández, V. G. Díaz, B. C. P. G. Bustelo, J. M. C.
Lovelle, and O. S. Martínez, “General purpose MDE tools,” IJIMAI, vol.
1, no. 1, pp. 72–75, 2008.

[14]	 G. C. Fernandez, J. P. Espada, V. G. Díaz, and M. G. Rodríguez, “Kuruma:
the vehicle automatic data capture for urban computing collaborative
systems,” Int. J. Interact. Multimed. Artif. Intell., vol. 2, no. 2, pp. 28–32,
2013.

[15]	 G. Cueva-Fernandez, J. P. Espada, V. García-Díaz, R. G. Crespo, and
N. Garcia-Fernandez, “Fuzzy system to adapt web voice interfaces
dynamically in a vehicle sensor tracking application definition,” Soft
Comput., pp. 1–14, 2015.

[16]	 V. García-Díaz, B. C. P. G-Bustelo, O. Sanjuán-Martínez, E. R. N. Valdez,
and J. M. C. Lovelle, “MCTest: towards an improvement of match
algorithms for models,” IET Softw., vol. 6, no. 2, p. 127, Apr. 2012.

[17]	 B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd.,
2009.

[18]	 G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos, “Supervised
learning of semantic classes for image annotation and retrieval,” Pattern
Anal. Mach. Intell. IEEE Trans., vol. 29, no. 3, pp. 394–410, 2007.

[19]	 A. Kattan, S. Fatima, and M. Arif, “Time-series event-based prediction:
An unsupervised learning framework based on genetic programming,” Inf.
Sci. (Ny)., 2015.

[20]	 A. Gosavi, “Control Optimization with Reinforcement Learning,” in
Simulation-Based Optimization, Springer, 2015, pp. 197–268.

[21]	 W. T. Miller, P. J. Werbos, and R. S. Sutton, Neural networks for control.
MIT press, 1995.

[22]	 D. A. Pomerleau, “Efficient training of artificial neural networks for
autonomous navigation,” Neural Comput., vol. 3, no. 1, pp. 88–97, 1991.

[23]	 C. G. Looney, Pattern recognition using neural networks: theory and
algorithms for engineers and scientists. Oxford University Press, Inc.,
1997.

[24]	 G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural
networks:: The state of the art,” Int. J. Forecast., vol. 14, no. 1, pp. 35–62,
1998.

[25]	 S. A. Kalogirou, “Artificial neural networks in renewable energy systems
applications: a review,” Renew. Sustain. energy Rev., vol. 5, no. 4, pp.
373–401, 2001.

[26]	 [26]	A. Kirillov, “AForge .NET framework,” 2010-03-02)[2010-12-20].
http://www. aforgenet. com. 2013.

[27]	 [27]	S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien,
F. de Bona, A. Binder, C. Gehl, and V. Franc, “The SHOGUN machine
learning toolbox,” J. Mach. Learn. Res., vol. 11, pp. 1799–1802, 2010.

[28]	 [28]	S. Owen, R. Anil, T. Dunning, and E. Friedman, Mahout in action.
Manning, 2011.

[29]	 R. C. Gronback, Eclipse modeling project: a domain-specific language
(DSL) toolkit. Pearson Education, 2009.

[30]	 O. M. G. CORBA and I. Specification, “Object Management Group.”
Joint revised submission OMG document orbos/99-02-, 1999.

[31]	 M. Mernik, J. Heering, and A. M. Sloane, “When and How to Develop
Domain-specific Languages,” ACM Comput. Surv., vol. 37, no. 4, pp.
316–344, 2005.

[32]	 K. Schmid and M. Verlage, “The economic impact of product line adoption
and evolution,” IEEE Softw., vol. 19, no. 4, pp. 50–57, 2002.

[33]	 B. A. Nardi, A small matter of programming: perspectives on end user
computing. MIT press, 1993.

[34]	 M. Voelter, “A Catalog of Patterns for Program Generation.,” in EuroPLoP,
2003, pp. 285–320.

[35]	 S. Efftinge and M. Völter, “oAW xText: A framework for textual DSLs,”
in Workshop on Modeling Symposium at Eclipse Summit, 2006, vol. 32,
p. 118.

[36]	 M. Eysholdt and H. Behrens, “Xtext: implement your language faster
than the quick and dirty way,” in Proceedings of the ACM international
conference companion on Object oriented programming systems
languages and applications companion, 2010, pp. 307–309.

[37]	 J. desRivieres and J. Wiegand, “Eclipse: A platform for integrating
development tools,” IBM Syst. J., vol. 43, no. 2, pp. 371–383, 2004.

[38]	 S. Haykin and N. Network, “A comprehensive foundation,” Neural
Networks, vol. 2, no. 2004, 2004.

[39]	 T. J. Parr and R. W. Quong, “ANTLR: A predicated-LL (k) parser
generator,” Softw. Pract. Exp., vol. 25, no. 7, pp. 789–810, 1995.

[40]	 D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. Pearson Education, 2008.

[41]	 G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S.
Völkel, “Design guidelines for domain specific languages,” arXiv Prepr.
arXiv1409.2378, 2014.

[42]	 B. Meyer, “Eiffel-The Language Prentice Hall,” Englewood Cliffs, NJ,
1992.

[43]	 H. Grönninger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel,
“Textbased modeling,” arXiv Prepr. arXiv1409.6623, 2014.

[44]	 D. Wile, “Lessons learned from real DSL experiments,” in System
Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on, 2003, p. 10–pp.

[45]	 R. S. Scowen and B. A. Wichmann, “The definition of comments in
programming languages,” Softw. Pract. Exp., vol. 4, no. 2, pp. 181–188,
1974.

[46]	 S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software modularity
violations,” in Proceedings of the 33rd International Conference on
Software Engineering, 2011, pp. 411–420.

Jordán Pascual Espada is a research scientist at Computer
Science Department of the University of Oviedo. Ph.D.
from the University of Oviedo in Computer Engineering
B.Sc. in Computer Science Engineering and a M.Sc. in
Web. He has published several articles in international
journals and conferences, he has worked in several national
research projects. His research interests include the Internet
of Things, exploration of new applications and associated

human computer interaction issues in ubiquitous computing and emerging
technologies, particularly mobile and Web applications.
Contact address is Computer Science Department, University of Oviedo.
Edificio de la Facultad de Ciencias. C/ Calvo Sotelo s/n. 33007 Oviedo
(Asturias, España); e-mail: pascualjordan@uniovi.es

Cristina Pelayo García-Bustelo is a lecturer in the
Computer Science Department of the University of Oviedo.
She has a PhD from the University of Oviedo in computer
engineering. Her research interests include object-oriented
technology, Web engineering, eGovernment, modeling
software with BPM, DSL and MDA.
Contact address is Computer Science Department,
University of Oviedo Edificio de la Facultad de Ciencias.

C/ Calvo Sotelo s/n. 33007 Oviedo (Asturias, España); e-mail: crispelayo@
uniovi.es

Juan Manuel Cueva Lovelle became a mining engineer
from Oviedo Mining Engineers Technical School in 1983
(Oviedo University, Spain). He has a PhD from Madrid
Polytechnic University, Spain (1990). From 1985 he has
been a professor at the languages and computers systems
area in Oviedo University (Spain), and is an ACM and
IEEE voting member. His research interests include object-
oriented technology, language processors, human-computer

interface, Web engineering, modeling software with BPM, DSL and MDA.
Contact address is Computer Science Department, University of Oviedo.
Edificio de la Facultad de Ciencias. C/ Calvo Sotelo s/n. 33007 Oviedo
(Asturias, España); e-mail: cueva(at)uniovi.es

Vicente García-Díaz is an Associate Professor in the
Computer Science Department of the University of Oviedo.
He has a PhD from the University of Oviedo in computer
engineering. His research interests include Domain-
Specific Languages, Model-Driven Engineering, Business
Process Management, Machine Learning, Internet of
Things and eLearning.
Contact address is Computer Science Department,

University of Oviedo. Edificio de la Facultad de Ciencias. C/ Calvo Sotelo s/n.
33007 Oviedo (Asturias, España); e-mail: garciavicente@uniovi.es

