
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-61-

Abstract — This paper reviews software visualization focused

on the educational environment. Software visualization is a very

wide study field, so we have focused on two areas: recursion

visualization and parsers’ visualization. The paper contains a

retrospective about what has been made on it, what lacks we have

found and the solution provided by the authors: SRec and VAST,

two software tools trying to make a significant difference between

them and the software made before.

Keywords — Software visualization, parsers’ construction,

recursion, educational visualizations.

I. INTRODUCTION

OFTWARE visualizations tools are used in different context

in order to improve and make easier the students learning

process. Many different kinds of tools can be used to improve

student learning process and motivation. For example, social

networks have a large impact in student motivation and

communication [45]. However, the results obtained are not

always positive, so there exist different variables, which can

reduce the educational impact. Nowadays, introducing

multimedia techniques can improve the learning process [48].

 In this work we present two different software visualization

tools to display different aspects as can be recursion and

parser analyzed process. However, the development and

evaluation methodology used in both cases is similar: student

centered. This means that all functionalities have been

included, improved or removed according the evaluations

results.

 The rest of the paper is structured as follow. In section II we

describe the most important related work in software

visualization for recursion and parser generation. In section 3

we describe SRec system. VAST is described in section 4. In

section 5 the evaluation process for SRec and VAST is

described. Finally in section 6 we set the conclusions and

future works.

II. RELATED WORKS

This section contains an introduction to software

visualization and a review about how recursion and parsers are

visualized by several already-made software tools, finding out

lacks and shortages, and proposing a new software tool for

those cases, SRec and VAST.

A. Software visualization

Software visualization is a technical tool for representing in

an electronic, animated and interactive way. Most part of these

representations tries to make easier the software

comprehension.

The educational environment focused on computer science

is one of the contexts where more software representations are

used, but currently is not massive. Teachers are reluctant to

adopt software and new ways to teach; they feel losing the

control of the class when they use new software. Lack of

evidences about visualization effectiveness is an important

factor to explain why software visualization is not used in

most classes.

In order to fix it, software for visualizations is created,

taking usability recommendations and exhaustive analyses

about what both teachers and students need.

B. Recursion visualization

Recursion visualization comprises the process of

representing graphically the recursion, providing animation

and interaction features. Recursion is a process or software

function that requires its own service once or several times to

find a solution. Every time the function is called by itself, the

size of the problem is smaller, letting it to reach the base case,

when the problem can be solved in an easy and direct way.

Recursion is a hard concept to be learned, help students to

learn it through recursion visualization has been the main goal

of a lot of software. These software applications usually use

animations for describing step by step how recursion achieves

to solve a problem. Student interaction is very important to

make easier learning tasks [22] like algorithm analysis or

debugging.

Recursion can be taught using different conceptual models.

A conceptual model provides a singular representation for a

concept, system or event, and must be complete, coherent and

precise. For recursion, there are some conceptual models

widely accepted and used for teaching recursion [19][42]. The

most abstract one is the inductive model, defined as a

mathematical formula where the base case is directly

identified. Metaphors are very used because they make easy

the identification of concepts with daily life (Russian dolls

[14] or mirrors [41]).

Going deeper in computer science education, there are

several conceptual models used at the classrooms. Trace is one

SRec and VAST: Visualizing Software with a

Student-Centered Aim.

Francisco Javier Almeida-Martínez and Antonio Pérez-Carrasco

Universidad Internacional de La Rioja, La Rioja, Spain

S

DOI: 10.9781/ijimai.2015.338

Regular Issue

-62-

of them; every recursive call and its results are textually

represented in a properly indented way. For multiple

recursions the tree model is recommended, since it shows in a

very clear way the nodes dependence. The animation runs

over the tree in deep mode. We can find two kinds of trees:

recursion tree (every node contains input parameters) or

activation tree (every node contains input parameters and

output result).

The third model shows a control stack where student can

see a node for every unfinished call and the chronological

order of callings. Copy-model broadens the control stack

model, adding the source code into the visualization and/or the

local variables in different windows or panels, properly

stacked.

C. Software for recursion visualization

Within the functional paradigm, we can find applications

like Kiel [11], RainbowScheme [21] and WinHIPE [29]. Kiel

shows the execution of first-order logic programs through a

syntax-structure tree, providing several functionalities for

controlling the execution.

RainbowScheme allows students to see semantic content

representations of programs coded using Scheme language.

Students can see recursion tree and the stack status. The code

is colored in order to identify the parts of the code shown in

those visual representations. The program can be executed

step by step.

WinHIPE is an IDE where user can see an expression

evaluation as a process of rewriting. Expressions are displayed

in a visual format through lists and trees. WinHIPE provides a

set of configuration options for making a more understandable

format. The steps sequence can be played entirely or partially,

in automatic or manual ways.

Within the imperative paradigm, there are applications like

ETV [34] and Jeliot [10], oriented to computer science, and

other software like EROSI [18], Function Visualizer [15],

Recursion Animator [40] and SimRecur [43], focused on

recursion teaching.

ETV shows a copy of the code by every recursive sentence

is executed. In every copy the current line is marked, that

helps to follow the execution sentence by sentence. Jeliot

provides a recursion tree and a copy-model view, similar to

ETV, for Java-coded programs. It allows students to see which

recursive calls are unfinished.

EROSI uses the copy model to show recursion. User can see

the passive flow and the active flow, how data are transmitted

and the output of the calls. The programs list is prefixed.

Function Visualizer works with Java-coded programs,

showing step by step how the program is executed and

opening a new window for every function call, so it is very

easy for students to know which calls have not finished yet.

Recursion Animator requires recursive Pascal code to work.

It uses the copy model, opening a new window for every

called function. User can navigate forwards and backwards for

repeating some parts of the execution.

SimRecur window contains several views like recursion

tree, copy-model representation, stack and information about

input parameters.
TABLE I

CONCEPTUAL MODELS USED TO DISPLAY RECURSION

C

o
p

y

(v
ar

.)

C
o
p
y

 (
co

d
e)

T
ra

ce

R
ec

u
rs

.
tr

ee

A
ct

iv
.
tr

ee

C
o
n

tr
o

l
st

ac
k

C
o
lo

re
d
 c

o
d
e

EROSI X

ETV X X X

Function Visualizer X X

Jeliot 3 X X X

KIEL X

RainbowScheme X X X

Recursion Animator X

SimRecur X X X

Most used conceptual models are copy-model and recursion

tree as is shown in Table . Both of them are capable of

showing how recursive programs are executed step by step

and show the whole story of the execution. However, most

programs chose only one or two models, so they offer a

limited vision of recursion.

The previous programs work with animations, it is essential

to make a representation for recursion. User can see step by

step or in an automatic way how data are transmitted or

calculated. However, just a few programs allow users to go

backwards in order to repeat parts of the visualization.

Besides, interaction possibilities were not widely exploited

by them. Sometimes ask for more information, move the

animation to a determined point, or mark nodes may be

interesting actions impossible to do with this programs. As we

said, interaction makes easier learning tasks [22], so this is a

gap that must be filled in order to improve how recursion can

be shown and taught in educative environments.

D. Parsers visualization

Parser visualization is another example of software

visualization. There exists some new methodologies as for

example ART [33], TML [25] and HAS [39] used to teach

language processors/compilers courses. Besides, these

alternatives consider the use of visualizations/animations tools

with the aim of improving students learning [20]. These

visualizations tools can be classified in two different groups.

On one hand we have those with a theatrical aim, so their

functionalities and characteristics indicate that they can be

only used in a studying environment. On the other hand, we

have other tools with a practical aim, so the

visualizations/animations generated are oriented to improve

parser development. One of the most representative tools in

the theatrical group could be JFLAP [32] because it allows

visualize/animate FDAs used in lexical analysis within

compilation process. Other tools in this group could be

THOTH [17] or BURGRAM [16]. In the second group we

have those tools, which main characteristics are that they

allow visualizing parsers generation and generating analyzers

for a specific language. However, within this group we have

distinguished three subgroups of tools, so although they have a

practical motivation, visualizations generated are oriented for

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-63-

different types of users. The first subgroup contains those

tools which do not generate parsers but have a strict

relationship with a specific language being able to display its

behavior. Some examples could be: ICOMP [24], VisiClang

[30], APA [33] and Tree Viewer [35]. In the second subgroup

it could be those tools, which can generate parsers but their

visualizations/animations are oriented for advance users. One

example of these tools could be VCOCO [31]. Finally, in the

third subgroup it could be those tools, which are able to

generate both animations and parsers but any user can use

their visualizations. Some examples of these tools could be

LISA [27], VisualYacc [F128], ANTLRworks[12], Jaccie [23]

and GYacc [25].

In Table is shown a summary of these tools analyzing their

main characteristics.
TABLE II

SUMMARY OF SYNTAX ANALYSIS VISUALIZATIONS TOOLS. COLUMN PARSER

TYPE INDICATES THE PARSER’S OUTPUT TYPE. COLUMNS ALGORITHM AND

TREE INDICATE IF THESE STRUCTURES ARE DISPLAYED. AVAILABILITY

COLUMN INDICATES IF THE TOOL CAN DOWNLOAD.

P
ar

se
r

ty
p

e

A
lg

o
ri

th
m

T
re

e

G
en

er
at

io
n

A
v

ai
la

b
il

it
y

ICOMP LL(1) X X

VisiClang LL(1) Grammar

APA SLR/

LL(1)
X X

Tree Viewer X

VCOCO LL(1) Grammar CocoR

AnaGram LALR(1) Grammar Own

CUPV LALR(1) X Cup

LISA SLR(1)/

LALR(1)/

LL(1)

 X Own X

Visual Yacc LR X Yacc

ANTRLWorks LL(k) X ANTLR X

JACCIE LL(1)/

SLR(1)/

LALR(1)

 X Own X

GYacc LALR(1) X Yacc

Analyzing Table we can see that all those tools, which can

generate a parser, depends on an own notation or sometimes

use a specific generation tool. This way of work makes

difficult to use any of these tools with an educational aim

because the visualizations are dependent of a generation tool.

As there do not exist any system, which implement all

fundamental characteristics (algorithm, syntax tree, etc) for

parser visualization, if we want to display a new dimension, it

would be necessary to change both generation and

visualization tools. From the students point of view it means to

learn how to use two different tools with different

characteristics: syntax, parser’s build process, understanding

output messages (for example LR shift-reduce conflict). From

the teacher point of view it means to get familiar with the new

environment. As we can guess, this way of working may

prevent teacher to use these tools in their lessons [28].

There exist other two aspects to take into account according

to the described tools: educational evaluation and availability.

Referring to the educational use of these tools, there do not

exist empirical data, which analyze the impact on the students

learning process. Another aspect is the availability, so it is

often difficult to get one on these tools.

III. SREC. ¿VISUALIZING RECURSION?

SRec [36][37][38] is a software application developed in

order to provide animated and interactive visualizations about

recursive Java-coded programs. SRec is aimed to help both

students and teachers in algorithms courses. This software

provides the visualizations generated in an automatic way, it

means that users only provide the class and the method they

want to run and the input parameters they want to use. SRec

compiles the class, runs the program, saves the needed internal

data and creates the visual representation of the views in a few

seconds. After that, users can go step by step through the

recursive execution (SRec does not advance sentence by

sentence but opening or closing recursive calls at a time).

Users can go forwards or backwards in an automatic or

manual mode. Users can go step by step or skip all the steps

until closing the current active node (the active node is the last

opened recursive call so far).

SRec offers through its window, shown in Fig. 4, four

different views at the same time. One of them (at the left)

shows the source code of the Java class loaded by the users,

where they can modify it, save it and recompile it again in

order to add, delete, change or correct one or several

sentences. The second view (located under the code view) is

the compiler view, where users can see if the changes they

wrote are right or generate some compilations errors.

When users create a visualization, two views are opened.

These views show two different representations of the

program at the same time and these representations can be

changed through the tabs they contain. Every tab let see a

different representation or conceptual model.

SRec offers three conceptual models for recursive

programs. Users can access to the recursion tree through the

"Tree" tab, where input parameters are shown in nodes, and

activation tree (see Fig. 5), where every node contains input

parameters and result values.

Fig. 4. Main window of SRec

This tree view contains a thumbnail representation of the

whole tree, very useful for handling very big trees. The stack

Regular Issue

-64-

view shows the unfinished calls and the dependence between

them, it just contains a subset of the tree view nodes. The trace

view contains a text line for every step the visualization has

advanced so far. They are indented according to the depth

level and the color is different for openings and closings

operations.

Fig. 5. Activation tree generated by SRec for Fibonacci algorithm (input: 5)

SRec provides two additional conceptual models for divide-

and-conquer algorithms. These algorithms usually act on a

data structure, dividing it in order to make a directly solvable

problem. SRec supports arrays and matrixes, so it can

represent them in an "extended" tree, where a small

representation of the data structure is added to every node.

Besides, two additional tabs are activated for showing a

chronological view and a structure view.

Fig. 6. Chronological view (not complete) generated by SRec for divide-and-

conquer algorithm (transposing a matrix).

The chronological view (see Fig. 6) shows all the statuses of

the structure along the execution in a chronological order. At

the left, input values are shown; at the right, returned values

are displayed. User can see how the algorithm is working step

by step on the different zones of the structure. The structure

view (see Figure 7) always shows the current status of the

structure, adding lines for arrays or boxes for matrixes below

the structure for marking the affected areas by every

unfinished call of the program. These views darken the areas

affected by finished recursive calls and the areas not affected

by any already open call.

Figure 7: Structure view generated by SRec for binary search (searching for

number 46)

The format of visualization is configurable. Colors for input

parameters and output values in nodes, how source code is

colored, location and separation of nodes in views, edges

shape… can be configured by the user. This feature is

important in order to adequate the visualization to different

environments (monitor, projector, big or small screens, strong

or weak illumination…).

SRec allows save on disk the current visualization. SRec

can open it in another work session in a very fast way, just

choosing the saved file. The visualization will be restored at

the same point, with the same data, and the same format. This

is a very useful functionality for teachers; they can load in a

few seconds a lot of previously saved examples created by

themselves.

IV. GENERAL VISUALIZATION MODEL AND VAST

Once we have analyzed the general limitations of the

parser’s visualization generation tools, we plan to create a

system with the following objectives:

1) Independence from the parser generation tool.

Building an independent visualization tool would make

easier to use it in educational context.

2) Display all fundamental structures. It should be

possible to display fundamental structures. New views

should be added without effort.

3) Review of the educational impact. The generated

animations should improve or make easier the students

learning process.

4) Availability. This tool should be easy to download.

5) Syntax error recovery. Generated animations

should display how the parser recovers from a syntax

error.

6) Building generic syntax analysis visualizations.

Once analyzed the visualizations built by the generation

tools of the compilation process, we present the design of a

generic model to visualize/animate the compilation process.

The main objective of this model is to set the base to develop a

generic tool in order to solve the limitations found. The

generic model can be divided in different independent

submodels with certain functionalities.

In Fig. 8 we show a general scheme of this model. As we can

see there exist four submodels: submodel of language

processing, submodel of visualization, submodel of animation

and submodel of interaction. The generalization process,

usually needs a module to interpret the intermeddle actions.

For example a generalization process for cartography

visualization needs a module to interpret the information [46].

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-65-

Fig. 8. Generic model of animation

Submodel of language processing. The objective of this

submodel is to achieve the independence between the

generation tools and the visualization tools. In this situation it

is necessary to analyze the actions performed by the parsers

during the execution in order to generate an intermeddle

representation. Due to this intermeddle representation; it is

necessary to insert extra information in the user's

specifications. As result, this model should perform two

different tasks:

1) Annotation process: modifications to get information

during the parser's execution. This is usually performed in

educational visualizations. The software platform does not

determine if the annotation process is necessary or not. For

example, to use the augmented reality it is needed to

include new information in the real time image [47].

2) Generate a intermeddle representation.

As we have said in previous sections, as there exist different

generation tools and different types of parsers, it is necessary

to consider two different levels of independence. The first

level has to be with working with different generation tools.

The second level means that the model should be able to

interpret the actions performed by the parsers.

Submodel of visualization. Using an annotated parser, its

execution allows to obtain an intermeddle representation

containing the visual representation. The task of this submodel

is to interpret this representation and build its visual

representation. In the compilation process we can highlight

some internals structures as the syntax tree, parser stack, etc.

Due to this, the syntax tree is the main visualization built by

this submodel. Besides, other structures as the input stream,

the stack, grammar and the actions performed are displayed.

All these views should be synchronized. One important

characteristic of this model is the expandability, so it should

be easy to add the visualization of a new structure.

Submodel of animation. Its main task is to animate the

static visualizations generated by the submodel of

visualization. As one of the most important structures is the

syntax tree, the main task of this submodel is to animate its

building process keeping the synchronization between all

views. The animation process should distinguish between LR

and LL parser because the syntax tree and the stack have

different behaviors. For a LR parser when it detects a terminal

node it is added into the stack. If it detects a non terminal

node, it performs a reduction deleting nodes from the stack.

When working with a LL parser, if a terminal node is detected,

it is removed from the stack. For a non terminal node, a

derivation is performed, which means that the rule's

consequent is inserted into the stack.

Submodel of interaction. This submodel is responsible of

the interaction with the user. In order to this, we can

distinguish two functionalities: make easier the animations

creation and allow working with the generated visualizations.

VAST. Visualizer of the Syntax Tree

VAST is the result of implementing the generic model of

visualization and each submodel. In Fig. 9 we can see VAST's

main window. The syntax tree is the main visualization. On

the right we have the input stream and the parser grammar. In

the bottom we have the parser's stack; the log for action

performed (only used during the animation process) and a

global view to navigate throw the syntax tree.

V. USABILITY-EDUCATIONAL EVALUATIONS

SRec and VAST have been subjected to several evaluations

about usability and educational effectiveness. Next we

summarize the processes and the obtained results.

A. Usability evaluation process for SRec

SRec has been evaluated five times about usability. The

main principles used to develop SRec were: easy installation,

easy learning to use it, and efficiency approach when user is

working.

Fig. 9. VAST main user interface.

The basic schema of each evaluation session was:

- Teacher demonstration: the teacher shows to students

how to create visualization from a source code for a

few minutes.

- Familiarization tasks: students do some light tasks in

order to get a first contact with SRec.

- Didactical exercise: one exercise must be done for the

course using SRec. These exercises asked for analyzes,

debugging, design or creation of an algorithm.

- Questionnaire: a questionnaire was provided to students

Regular Issue

-66-

in order they to fill it with their opinion about SRec.

The fourth session was made using two days (taking data

from both of them) and the last session took three classes (we

took data only from the last day). ¡Error! No se encuentra el

origen de la referencia. contains the marks for several

general questions about SRec (the minimum value was 1 and

the maximum value was 5).

TABLE III

SREC SCORES FROM USABILITY EVALUATIONS

S

es
si

o
n

 1

S
es

si
o

n
 2

S
es

si
o

n
 3

S
es

si
o

n
 4

S
es

si
o

n
 5

SRec is easy to use 3.88 4.50 4.20 4.19 3.94

General quality of SRec to analyze

Recursion

3.38 4.29 4.00 - 3.84

I like SRec 3.63 4.26 3.95 3.98 3.84

Number of opinions 7 28 21 28/19 49

According to the ¡Error! No se encuentra el origen de la

referencia., marks were growing up while the same

functionality was improved (working in a more stable way and

with a better interface), so marks were growing up from

session 1 to session 2.

After that, new functionalities and possibilities were added,

making harder how to learn to use SRec, and the asked tasks

were more difficult too, so marks were lightly going down.

Table ¡Error! No se encuentra el origen de la referencia.

contains the marks (fifth evaluation) for several important

SRec features.

TABLE IV

OTHER SREC SCORES FROM USABILITY SESSIONS

Animation controls 3.96

Activation tree view 4.00

Visualization generation process 4.20

Chronological view 3.86

Structure view 3.63

Menu structure 4.00

Window elements interaction (panels, scrolling…) 3.55

The questionnaires gave some additional data through open

questions. The suggestions made by students were changing in

the different evaluation sessions, due to SRec was adding

some previous suggestions and adding new functionalities.

Some of them partially changed the way how SRec must be

used and it could provoke some new issues and the lowering

of the marks.

In the fifth evaluation, 30% of students did not provide any

functional suggestion for SRec and only a third part of

students would delete some functionality of SRec. When the

questionnaire asked for the hardest parts to be learnt, 18.4%

answered saying that SRec was easy to use (positive answers),

and 49% did not answered the question; just 32.7% talked

about dark aspects of SRec. 20.4% of students spontaneously

used SRec to study or to make activities for the course, as they

say in the questionnaire.

B. VAST evaluation process

In case of VAST, once analysed different visualization tools

we realized that none of them was evaluated in an educational

way. As there do not exist empirical results, maybe those tools

are used without adapting to students’ needs. From the

educational point of view, they could have a negative impact

in students’ learning process.

According to VAST, we divided the implementation

process in different stages. Once finishing one stage we

planned different evaluations of the generic model. Due to

this, the evaluation process has been iterative, allowing

adapting the functionalities to students needs. Two different

types of evaluations have been executed: interactive-usability

[3][4][5][9][6] and educational [2][7][8][3].

The interactive-usability evaluations had a double intention:

evaluator observation and students opinion. The evaluator’s

observation evaluations allowed to study and annote how

students used the tool and detect the main problems. The

opinion evaluations were focus on asking students about the

experience when using the tools. Educational evaluations have

allowed observing the impact on student’s learning process

when using these tools. Due to this, we designed pre and post

knowledge tests according to Bloom’s taxonomy. The

methodology used is similar in all evaluations.

Although we have distinguished three different types of

evaluations, they have been performed at the same time. This

means that one educational evaluation consists of

observations, usability tests and knowledge tests. For the

usability and educational impact evaluations, students have

been divided in different groups (control and treatment) [13]

randomly. Groups were balanced using a knowledge pretest.

The first evaluation of VAST was focus on observing how

students worked with the tool and the problems they had. In

the second evaluation we compared VAST and ANTLRworks,

obtaining results in favour ANTLRworks according to

usability. In this case we got significant statistical differences

in educational impact (synthesis level in Bloom’s taxonomy)

in favour VAST. From these results we planned a global

integration in VAST in order to improve its usability. Once

finished the development we performed another usability

evaluation. This process continued during all the development

process.

VI. CONCLUSIONS AND FUTURE WORKS

This paper contains a review about software visualization

aimed to students. They are not massively used in the

classrooms and some causes were explained. Software

visualization can be divided in several areas, and two of them

were exposed in detail here: recursive programs and parsers.

For recursive programs, the most used conceptual models

were commented and the most relevant software for recursion

visualizations was briefly reviewed. The lack of strong

interaction features was one of the main conclusions joined to

the limited vision of recursion given by most of the existing

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-67-

software. There, SRec marks a difference with its interaction

features and its wide range of visualizations for recursion.

SRec is totally functional; it allows improve teachers’ job,

and students mostly like it. However, some ways to improve it

have been discovered. The main future works are:

- Educational effectiveness evaluations for testing

whether SRec really helps students to learn how

recursion works.

- Interface simplification for making a more agile SRec.

- Predictive mode for SRec, allowing students to fill

empty nodes with their expected values to check if they

understood the algorithm they are visualizing.

- Enlarging the supported algorithm-design techniques in

order to show specific views for them (dynamic

programming, for example).

- Study several data taken from the fifth evaluation

session about students’ usage in order to figure out how

students work with SRec. This may make possible

create students profiles and adapt SRec to them.

About parsers’ visualization, this paper reviews some new

methodologies focused on processors and compilers teaching.

There are several software tools, catalogued into two main

categories: tools with a theatrical aim for educational context

and other software oriented to parsers development.

This second group contains three categories. The first one is

for software aimed only to visualize how a parser behaves, not

to generate it. The second one contains software that can

generate parsers and their visualizations are oriented to

advanced users. The last category is for software able to

generate both animations and parsers to a wide target of users.

The main drawback for these software tools is that they

depend on a generation tool, so it is difficult to use them in an

educational environment, so students have to use two different

tools to understand the whole process and teachers may be

reluctant to use these tools for their classes. Here is where

VAST changes the paradigm.

The development process with VAST has not finished. We

plan to finish the integration of syntax error recovery

visualization. As described in bibliography, the syntax error

recovery is usually known as a “black art” [1]. From the

students’ point of view, it is one of the most difficult parts to

understand in parser construction. So, if a system can display

this process, maybe students can learn it easily.

REFERENCES

[1] Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D. (2007). Compilers:
Principles, Techniques, and Tools, Prentice Hall.

[2] Almeida-Martínez, F.J., Urquiza-Fuentes, J. (2009). Long term

evaluation using VAST. Technical report. Universidad Rey Juan Carlos,
2009 1988-8074, 2011-13.

[3] Almeida-Martínez and Urquiza-Fuentes, J. (2011). Building LL(1)

grammars and parsers using VAST and ANTLR. Technical report.
Universidad Rey Juan Carlos, 2011 1988-8074, 2011-10.

[4] Almeida-Martínez, F.J., Urquiza-Fuentes, J. (2011). Preliminary

evaluation of the syntax error recovery visualization using VAST.
Technical report. Universidad Rey Juan Carlos, 2011 1988-8074, 2011-

08.

[5] Almeida-Martínez, F.J., Urquiza-Fuentes, J. (2011). VAST. Evaluation
of the execution-visualization functional integration. Technical report.

Universidad Rey Juan Carlos, 2011 1988-8074, 2011-07.

[6] Almeida-Martínez, F.J., Urquiza-Fuentes, J. (2009). Teaching LL(1)

parsers with VAST- An Usability Evaluation. Technical report.
Universidad Rey Juan Carlos, 2009 1988-8074, 2009-01.

[7] Almeida-Martínez, F.J., Urquiza-Fuentes, J., Pérez-Carrasco, A. (2011).

Syntax error recovery visualization. Evaluation using VAST and Cup.
Technical report. Universidad Rey Juan Carlos, 2011 1988-8074, 2011-

12.

[8] Almeida-Martínez, F.J., Urquiza-Fuentes, J., Pérez-Carrasco, A. (2011).
Building LR(1) grammars and parsers using VAST and Cup. Technical

report. Universidad Rey Juan Carlos, 2011 1988-8074, 2011-11.

[9] Almeida-Martínez, F.J., Urquiza-Fuentes, J., Pérez-Carrasco, A. (2011).
Building LL(1) parsers with VAST. Second usability and educational

evaluation. Technical report. Universidad Rey Juan Carlos, 2011 1988-

8074, 2011-06.
[10] Ben-Bassat, R., Ben-Ari, M., Uronen, P.A. (2003). “The Jeliot 2000

program animation system”. Computers & Education, 40(1), pp.1-15.

[11] Berghammer, R., Milanese, U. (2001). “KIEL: A computer system for
visualizing the execution of functional programs”. Proceedings of the

International. Workshop on Functional and (Constraint) Logic

Programming 2001, Technical. Report No. 2017, pp. 365-368, Kiel,
Germany: University of Kiel.

[12] Bovet, J., Parr, T. (2008). ANTLRWorks: an antlr grammar

development environment. Software: Practice and Experience,
38(12):1305–1332.

[13] Cohen, L., Manion, L., Morrison, K. (2000). Research Methods in

Education. RoutledgeFalmer, 2000.
[14] Dale, N.B., Weems, C. (1991): “Pascal”, 3rd ed. Lexington, MA: D.C.

Heath.
[15] Dershem, H.L., Erin Parker, D., & Weinhold, R. (1999): “A Java

function visualizer”. Journal of Computing in Small Colleges, Vol. 15.

[16] García Osorio, C., Gómez-Palacios, C., García-Pedrajas, N. (2008). A
Tool for Teaching LL and LR Parsing Algorithms. In ITiCSE ’08:

Proceedings of the 13th Annual Conference on Innovation and

Technology in Computer Science Education, pages 317–317, New York,
NY, USA. ACM.

[17] García Osorio, C., Mediavilla Sáiz, I., Jimeno Visitación, J., García

Pedrajas, N. (2008). Teaching Push-Down Automata and Turing
Machines. In ITiCSE ’08: Proceedings of the 13th Annual Conference

on Innovation and Technology in Computer Science Education, pages

316–316, New York, NY, USA. ACM.

[18] George, C.E. (2000). “EROSI: Visualising recursion and discovering

new errors”. Proceedings of the 31st SIGCSE Technical Symposium on

Computer Science Education, SIGCSE’00, pp. 305-309, New York,
ACM Press

[19] Haynes, S.M. (1995): “Explaining recursion to the unsophisticated”.

ACM SIGCSE Bulletin, Vol. 27(3), pp. 3-6 y 14.
[20] Hundhausen, C.D., Douglas, S.A., Stasko, J.T. (2002) A Meta-Study of

Algorithm Visualization Effectiveness. Journal of Visualization

Langauge and Computer animation, 13(3):259–290.
[21] Jehng, J.-C.J., Tung, S.-H.S. & Chang, C.-T. (1999): “A visualization

approach to learning the concept of recursion”. Journal of Computer

Assisted Learning, Vol. 15, pp. 279-290.
[22] Kehoe, C., Stasko, J., Taylor, A. (2001): “Rethinking the evaluation of

algorithm animations as learning aids: an observational study”.

International Journal of Human-Computer Studies, Vol. 54(2), pp. 265–
284.

[23] Krebs, N., Schmitz, L. (2004). Jaccie Handbook. UniBw München.

[24] Kristy, A., Robert, H., Wayne, Y. (1998). Design and implementation of
the UW illustrated compiler. In PLDI ’88: Proceedings of the ACM

SIGPLAN 1988 conference on Programming Language Design and

Implementation, pages 105–114, New York, NY, USA. ACM.
[25] Ledgard, H.F. (1971). Ten mini-languages: A study of topical issues in

programming languages. ACM Computing Surveys, 3(3):115–146.
[26] Lovato, M.E., Kleyn, M.F. (1995). Parser visualizations for developing

grammars with yacc. In SIGCSE ’95: Proceedings of the twenty-sixth

SIGCSE technical symposium on Computer science education, pages

345–349, New York, NY, USA. ACM.
[27] Mernik, M., Zumer, V. (2003). An educational tool for teaching

compiler construction. In IEEE Transactions on Education, volume 46,

pages 61–68.
[28] Naps, T.L., Rossling, G., Almstrum, V., Dann, W., Fleischer, R.,

Hundhausen, C., Korhonen, A., Malmi, L., McNally, M., Rodger, S.,

Velázquez-Iturbide, J.A. (1998). Exploring the role of visualization and
engagement in computer science education. In ITiCSE-WGR ’02:

Working group reports from ITiCSE on Innovation and Technology in

Regular Issue

-68-

Computer Science Education, pages 131–152, New York, NY, USA,

2002. ACM.A. ACM.
[29] Pareja, C., Urquiza, J., Velázquez, J. Á. (2007): “WinHIPE: an IDE for

functional programming based on rewriting and visualization”. ACM

SIGPLAN Notices, Vol. 42(3), pp. 14–23.
[30] Resler, D. (1990). VisiCLANG. A Visible Compiler for CLANG. ACM

SIGPLAN Notices, 25(8):120–123.

[31] Resler, D., Deaver, D. (1998). VCOCO: A Visualisation Tool for
Teaching Compilers. In ITiCSE ’98: Proceedings of the 6th annual

Conference on the Teaching of Computing and the 3rd annual

Conference on Integrating Technology into Computer Science
Education, pages 199–202, New York, NY, USA. ACM.

[32] Rodger, S.H., Lim, J., Reading, S. (2007). Increasing interaction and

support in the formal languages and automata theory course. In ITiCSE
’07: Proceedings of the 12th annual SIGCSE conference on Innovation

and technology in computer science education, pages 58–62, New York,

NY, USA, 2007. ACM.
[33] Sami, K., Yanti, S. (1998) Animating parsing algorithms. In SIGCSE

’98: Proceedings of the twenty-ninth SIGCSE Technical Symposium on

Computer Science Education, pages 232–236, New York, NY, USA.
ACM.

[34] Terada, M. (2005): “ETV: a program trace player for students”.

Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE’05, pp. 118-122,

New York, ACM Press.

[35] Vegdahl, S.R. (2000). Using visualization tools to teach compiler
design. In Proceedings of the second annual CCSC on Computing in

Small Colleges Northwestern conference, pages 72–83, US. Consortium
for Computing Sciences in Colleges.

[36] Velázquez, J. Á., Pérez, A., Urquiza, J. (2008): “A design of automatic

visualizations for divide-and-conquer algorithms”. Electronic Notes in
Theoretical Computer Science (2009), Vol. 224. Proceedings V Program

Visualization Workshop (PVW 2008).

[37] Velázquez, J. Á., Pérez, A., Urquiza, J. (2009): “Interactive visualization
of Recursion with SRec”. 14th ACM-SIGCSE Annual Conference on

Innovation and Technology in Computer Science (ITICSE 2009), póster.

[38] Velázquez, J. Á., Pérez, A., Urquiza, J. (2008): “SRec: An animation
system of recursion for algorithm courses”. 13rd ACM-SIGCSE Annual

Conference on Innovation and Technology in Computer Science

(ITICSE 2008), pp.225-229.

[39] White, E., Sen, R., Stewart, N. (2005) Hide and show: using real

compiler code for teaching. In Proceedings of the 36th SIGCSE

technical symposium on Computer science education, SIGCSE ’05,
pages 12–16, New York, NY, USA. ACM.

[40] Wilcocks, D., & Sanders, I. (1993): “Animating recursion as an aid to

instruction”. Computers & Education, Vol. 23, pp. 221-226.
[41] Wirth, N. (1976): “Algorithms + Data Structures = Programs”.

Englewood Cliffs, NJ: Prentice Hall (1976).

[42] Wu, C.-C., Dale, N.B., & Bethel, L.J. (1998): “Conceptual models and
cognitive learning styles in teaching recursion”. Proceedings of the 29th

SIGCSE Technical Symposium on Computer Science Education,

SIGCSE’98, pp. 292-296, New York, ACM Press.
[43] Wu, C.-C., Lee, Lin, J.M.-C., & Hsu I.Y-W. (1996): “Closed

laboratories using SimList and SimRecur”. Computers & Education,

Vol. 28, pp. 55-64.
[44] Elizabeth L. White, Jeffrey Ruby, and Laura Denise Deddens. Software

visualization of lr parsing and synthesized attribute evaluation. Software:

Practice and Experience, 29(1):1–16, 1999.  
[45] J.A.Cortés, and J.O.Lozano, Social Networks as Learning Environments

for Higher Education, International Journal of Artificial Intelligence and

Interactive Multimedia, vol. 2, issue Special Issue on Multisensor User
Tracking and Analytics to Improve Education and other Application

Fields, no. 7, pp. 63-69, 09/2014.

[46] Lorezo, W., R. Gonzalez-Crespo, and A. Castillo-Sanz, A Prototype for
linear features generalization, International Journal of Artificial

Intelligence and Interactive Multimedia, vol. 1, issue A Direct Path to

Intelligent Tools, no. 3, pp. 59-65, 12/2010.
[47] Neri, R. B., G. M. Lopez, H. Bolivar-Baron, and R. Gonzalez-Crespo,

Annotation and Visualization in Android: An Application for Education

and Real Time Information, International Journal of Interactive
Multimedia and Artificial Intelligence, vol. 2, issue Regular Issue, no. 2,

pp. 7-12, 06/2013.

[48] H. Bolivar-Baron, R. Gonzlález-Crespo, J. Pascual-Espada and O.
Sanjuán-Martínez, Assessment of learning in environments interactive

through fuzzy cognitive maps, Soft Computing, vol 19, issue 4, pp.

1037-1050.

Francisco Javier Almeida-Martínez was born in 1984 Las

Palmas, Spain. He graduated in Computer Science in 2007
in Rey Juan Carlos University, Spain. In 2011 finished his

PhD in software visualization in the Rey Juan Carlos

University. Nowadays he works as a Software Engineer for
payment services and at La Rioja International University as

a lecturer.

Antonio Pérez-Carrasco was born in 1983 in Madrid,

Spain. He graduated in Computer Science in 2008 in Rey

Juan Carlos University, Spain. In 2011 finished his PhD in
software visualization in the Rey Juan Carlos University.

Nowadays he works as a Software Engineer for payment

services since 2012 and at La Rioja International University
as a lecturer since 2012.

http://www.ijimai.org/journal/biblio/author/387
http://www.ijimai.org/journal/biblio/author/388
http://www.ijimai.org/journal/node/677
http://www.ijimai.org/journal/node/677
http://www.ijimai.org/journal/biblio/author/196
http://www.ijimai.org/journal/biblio/author/6
http://www.ijimai.org/journal/biblio/author/195
http://www.ijimai.org/journal/node/107
http://www.ijimai.org/journal/node/107
http://www.ijimai.org/journal/biblio/author/257
http://www.ijimai.org/journal/biblio/author/258
http://www.ijimai.org/journal/biblio/author/5
http://www.ijimai.org/journal/biblio/author/6
http://www.ijimai.org/journal/node/460
http://www.ijimai.org/journal/node/460

