
Regular Issue

-82-

Abstract — The most usual solution to improve the

performance of a Web server is based on building a distributed

architecture, where the Web server is offered from a set of nodes.

The most widely distributed architecture is based on Web

clusters including a Web switch. The Web switch is responsible

for deciding which site’s node must attend which request. When

deciding where elements are stored the classical solution was to

fully replicate all contents in every server node. However, partial

replication may require a fraction of storage while offering the

same level of reliability. In this paper we report a solution based

on dynamic partial replication where the number of replicas for

each file and its management is handled by an agent architecture.

We compare our solution with full replication and with static

partial replication both in terms of storage capacity consumption

and service time. Our results show that our proposed solution

provides equivalent performance with a better use of disk storage

capacity.

Keywords — Distributed computing, Computer network

performance, Network servers, Cooperative systems.

I. INTRODUCTION

Web site typically consists of a set of elements or

resources, where each of them can be of a certain type

(HTML page, image, video, file download, music, etc.). A

page consists of a primary element that refers to a series of

secondary elements (included in the page).

The Web site receives requests from clients, where each

request for a web page typically consists of multiple requests

to the server, one for each object included in that page. The

client establishes a connection to the server for each of these

requests, and receives the response for this connection [1],

although some optimizations are possible to reduce the

number of connections.

The most usual solution to improve the performance of a

Web server is based on building a distributed architecture,

where the Web service is offered from a set of nodes [2],

acting as a logical single server and consequently giving a

single server image.

There are a variety of solutions allowing the construction of

distributed Web servers [3]. Those solutions are based either

on total replication of contents (all contents are replicated in

every server nodes) or on the distribution of contents (contents

are distributed so that each element is in a single server node).

Between these two alternatives (total replication and total

distribution), a third alternative can be found, namely partial

replication, where a certain number of copies is performed for

each element. This third alternative [4] [5] needs to determine

a priori the number of copies required, which does not always

respond to the real needs of the system or to the needs

evolution over time.

An evolution of this third alternative dynamically adapts the

number of stored replicas according to actual needs and

modifies this number when change is needed [6].

This paper presents a quantitative evaluation performed on

a prototype that follows this model in which the access time

and required storage space is quantified.

The rest of this paper is structured as follows: Section II

describes the architecture used in the distributed web server,

Section III explains algorithms developed to allow dynamic

replication, a prototype is presented in Section IV, results from

evaluation are shown in Section V, finally conclusions are

drawn in Section VI.

II. A DYNAMIC PARTIAL REPLICATION ARCHITECTURE

IMPLEMENTATION BY AGENTS

The most widely distributed Web system architecture is

based on clusters [1]. In this architecture (Fig. 1) a distribution

node between clients and servers is used: the Web switch. The

Web switch is receiving all requests to the visible IP address

through a request distribution algorithm, and decides which

server node should process which request [3]

The use of an additional service network (Fig. 2) is a

modification from the base architecture of a Web-based

system cluster that can improve performance of adaptive

allocation of contents, for the redistribution of those contents

without affecting the main network of the cluster [7].

Enrique Torres
1
, José Daniel García

2
, Oscar Sanjuan

3
, Luis Joyanes

4
 and Rubén González Crespo

3

1
Madrid Council IT Deparment, Madrid, Spain

2
Universidad Carlos III de Madrid, Leganés, Madrid, Spain,

3
Universidad Internacional de La Rioja (UNIR), La Rioja, Spain,

4
Universidad Pontificia de Salamanca, Madrid, Spain

A Quantitative Justification to Dynamic Partial

Replication of Web Contents through an Agent

Architecture

A

DOI: 10.9781/ijimai.2015.3311

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-83-

Fig. 1. Cluster Web based General Architecture

Fig. 2. Cluster Web based General Architecture with an Additional Service

Network

Development through intelligent agents simplifies decision

making for each component, as each agent behaves in an

autonomous way and interacts with the rest of agents [8].

The needed implementation to develop a Web site with

partial replication needs to perform activities in the Web

switch as well as in server nodes.

• The Web switch must contain all the necessary logic to

allocate requests to servers (Request Distributor

Agent), and to account them in order to modify the

popularity and to determine whether the popularity

change implies a change in replication (Replica Control

Agent). This machine must also contain the module

allowing the administrator to add or remove items

(External Control Agent). The Web switch scheme is

presented in Fig. 3.

• The server node must include the required logic to

obtain an item when the Web switch decides that there

should be an additional replica on that node making a

request to other server node (Content Control Agent),

and the component performing requests resolution by

accessing disk (Disk Access Agent). The server node

scheme is presented in Fig. 4.

Fig. 3. Agents in a Web switch

Fig. 4. Agents in a Server Node

To build the previous model, it is necessary to specify the

algorithm used by each of the components, on the

understanding that the receiver and transmitter modules only

transfer requests reaching each system

III. DYNAMIC REPLICATION ALGORITHMS

Having established the architecture to be used, it is also

necessary to explain the proposed dynamic replication

algorithm, which will be placed in the above mentioned

replica module. This algorithm tries to dynamically optimize

the number of copies depending on the number of requests it

receives to each file. Consequently, it will increase the number

of replicas of those files which are in high demand to meet

actual requests while it will reduce the number of copies of

those files which are in low demand in order to free up storage

space in nodes [9].

The dynamic replication faces three issues: number of

copies for each file, choosing the nodes where the copies are

stored, and when the algorithm is executed.

 Number of copies: The algorithm assigns all files

once, causing the free storage of nodes to decrease

by a certain percentage. This percentage decreases

the probability of files to be requested and, while

this value is greater than 0, the system includes a

copy of that file. This will give the total number of

copies of file, so we compare this number with the

number of copies already in the system and add or

remove copies depending on whether the new

number is higher or lower [10]. The algorithm for

obtaining the number of copies is shown in

Algorithm 1.

Regular Issue

-84-

Algorithm 1: Obtaining the number of copies.

 Storage node: When assigning copies of files to

different nodes, it is important to note that nodes in

the proposed system have a finite storage space and

this aspect must be taken into account [11]. In

addition, cloned nodes should be avoided as much

as possible, and an appropriate algorithm should be

used. A widely used solution addressing the same

problem [7] is the backpack greedy algorithm with

prior sorting of replicas by size.

 Activation time: The system should consider to

increase the number of replicas of a file when

quality of service is compromised [6]. That is, when

the response time of a file exceeds a preset time, the

situation is called timing failure. The maximum

response time for each file and the probability that

the response time is met will be established by the

administrator. The latter value is considered

because it is admissible that a small percentage of

timing failures does not compromise the quality of

service and therefore while failures are below the

threshold the number of copies will not be

increased. When the request ratio that meets the

established response time is below the established

probability, the algorithm is activated to optimize

the number of copies of the files. Moreover, every

time a new file is added, the number of copies must

be recomputed for all the files, using the probability

given by the Pareto distribution for the new file.

IV. MODEL BUILT

To quickly create a model to perform the evaluation, we

decided to build a simulation of the real situation.

To build model we used the OMNeT ++ with the INET

framework. This tool has already been used to create a large

number of projects, such as developing a full suite of TCP/IP

at the Karlsruhe University [12], a framework for computer

architectures simulation [13], a file storage model for

distributed systems [14], a simulation model for IEEE

802.15.4 [15], or make a performance analysis of a handover

level 2 in IPv6 mobile networks [16] among many others.

Three VLANs are required for this model, the first routes

the client requests to the Web Switch, the second links the

Web Switch with the server nodes, and the third one is used as

internal service network. A simplified diagram is shown in

Fig. 5.

Fig. 5. Model Architecture simplified to 8 clients

Behavioral patterns of a web server based on experimental

data were presented in several papers [17] [18]. In this paper,

an adaptation of this model has been made to the case of a

Web cluster.

A Web site consists of a set of elements or resources, where

each may be of a certain type (HTML page, image, video, file

download, music, etc.). Set E (see Equation 1) can be defined

as the set of all elements that make up the Web site.

E = {e1, e2, . . . , eN} (1)

Each element of set E can be a primary element or a

secondary element. Thus, the E set can be expressed as the

union of set Ep, primary elements, and set Es, secondary

elements (see Equation 2).

E = E
p
 U E

s

E
p
 = {e1

p
, e2

p
, . . . , en

p
}

E
s
 = {e1

s
, e2

s
, . . . , em

s
}

(2)

The number of secondary elements included per each

primary element can be modeled by a Pareto distribution [19]

(see Equation 3).

𝑓(𝑥) =
𝛼𝑘𝛼

𝑥𝛼+1
𝑥 ≥ 𝑘 (3)

A web page can be defined as a pair consisting of a primary

element and a set of secondary elements, and this allows

define the W set as all the site’s web pages (see Equation 4).

wi = {ei
p
, ei1

s
, . . . , ein

s
}

W = {w1, w2, . . . , Wm}
(4)

assign TRUE to insert

while insert is equal to TRUE

 assign FALSE to insert

 for all i = 0 to FileNumber

 if FileProbability i > 0

 decrease size i of FreeSpace

 increase CopyNumber

 assign TRUE to insert

 for all i = 0 to FileNumber

 decrease (1-FreeSpace)/TotalSpace

 of FileProbability i

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-85-

The size of the elements is modeled [19] by a lognormal

distribution (see Equation 5).

𝑓(𝑥) =
1

𝑥√2𝜋𝜎2
𝑒

−
(ln 𝑥− 𝜇)2

2𝜎2 (5)

Experimental studies have established values of α = 2.43

and k = 1 to the number of secondary elements [19], as well as

values μ = 9.537 and σ = 1.318 for size of primary elements

and μ = 8.215 and σ = 1, 46 for the size of secondary elements

[20] [21].

Activity of a client is determined by a sequence of sessions

and downtime between sessions (Downtime) as show in Fig. 6.

Fig. 6. Customer’s activity along the time

Downtime can be modeled by a Pareto distribution [19].

Experimental studies [22] use values α = 1.4 and k = 20.

During a session, a client visits a set of Web pages

(Requests per session), starting with the entry page to the

website. Before moving to the next page, it evaluates the

contents of the current page for a given time (Inactivity time)

as shown in Fig. 7.

Fig. 7. Session activity

The Requests per session can be modeled quite accurately

by an inverse Gaussian distribution [23] (see Equation 6) with

experimental values of μ = 3.86 and λ = 9.46 [20] [21].

𝑓(𝑥) = √ 𝜆

2𝜋𝑥3 𝑒
−

𝜆(𝑥−𝜇)2

2𝜇2𝑥 (6)

Several studies have modeled the downtime by a Pareto

distribution with experimental values k = 1 and α = 1.4 [20]

[21].

After receiving the response to the primary element, the

client scans the content (Scan time) before generating multiple

request and multiple connections, up to the maximum

indicated by the Degree of concurrency, one for each

secondary file.

The Scan time is modeled by a lognormal distribution with

experimental results of μ = 360.4 and σ = 106.5 [18].

The Degree of concurrency has been modeled as a constant

which sets the number of connections.

In the server the different elements involved in an file

access [23] are included to compute the access time to each of

the stored files. The file requests arrive to the File Manager

that passes it to the I/O Manager.

The File Manager receives file requests to be read/write and

queries the File Table. In this article was used a UNIX-like

file system structure [24], with some simplifications that do

not affect the access time. First the Index Node Table is

looked up to obtain the disk blocks that must be accessed and

if the file uses indexing blocks, Fig. 8, the system keeps the

access order to know the addresses of blocks.

Fig. 8. Index Node Table in UNIX

A call to the I/O Manager is made for each block, which

computes the physical address, scheduling disk accesses

according to these addresses and computes access time based

on the current position of the head and the physical parameters

of each of the disks [24]. It is possible to set both the

rotational speed, the speed of movement of the heads and the

transfer rate.

Most of the time used in the resolution of an HTTP request

corresponds to the operation of disk access for the file

associated with the request, which depends largely on the size

of the file.

V. EVALUATION RESULTS

We compared different options for content distribution, in

order to evaluate whether replica allocation policy affects

performance.

In all alternatives it has been simulated the behavior of 200

clients making requests on a web cluster system for 7 days of

simulated time.

The alternatives evaluated were:

TREP Total Replication

SPREP Static Partial Replication

DPREP Dynamic Partial Replication

Iteration over the servers for each of the files is used as

requests allocation policy. First server that contains the file

requested is selected both SPREP and DPREP.

The first performance metric used is the HTTP Request

Service Time, which corresponds to the time between the time

Regular Issue

-86-

when the client sends a request for a file and the time when it

receives the response. Table 1 shows the average results of the

three alternatives when the number of servers is increased.

TABLE I

 SIMULATION RESULTS FOR THE AVERAGE SERVICE TIME OF A WEB SITE WHEN

THE NUMBER OF SERVERS IS INCREASED

Number of servers TREP SPREP DPREP

4 servers 1,82601405 1,33961388 1,34021504

5 servers 1,57350203 1,59601244 1,58789328

6 servers 1,62635074 1,76683025 1,75924017

7 servers 1,45933568 1,53470846 1,50389218

8 servers 2,01486739 1,99620641 1,98940237

9 servers 1,28018552 1,24920451 1,31952067

10 servers 1,4591151 1,4672851 1,4619481

To determine whether the difference in Average Service

Time of a Web Site is significant, an analysis of variance test

has been performed, with the results shown in Table 2. The

test was performed for a value of α = 0, 05

TABLE II
VARIANCE TEST RESULTS FOR THE AVERAGE SERVICE TIME OF A WEB SITE

WITH Α=0,05

F 0,0110429

F Critical Value 3,55455714

Probability 0,98902453

Fig. 9 shows graphically the above average values. It can be

easily seen that the Average Service Times are similar.

Fig. 9. Average Service Time of a Web Site

Another metric to evaluate the evolution of the storage

space is the number of files stored in each server. The average

results were shown in Table 3.

TABLE III

FILES' COPIES STORED IN EACH SERVER

Number of servers TREP SPREP DPREP

4 servers 10400 8361,00 8157,00

5 servers 10400 7953,20 7684,60

6 servers 10400 7681,33 6427,00

7 servers 10400 7683,43 5818,90

8 servers 10400 7683,52 5853,50

9 servers 10400 7683,52 5859,85

10 servers 10400 7614,88 5876,13

If we consider the distribution of files is the same for

primary and secondary files, and according to several studies

[20] [21] it is possible to calculate the number of secondary

files associated to a primary as it follows a Pareto distribution

with α = 2, 43 k = 1, (see Equation 7).

𝐸(𝑋) =
α k

α−1
= 1,6993 (7)

We can deduce that the function that determines the number

of primary and secondary files based on the total number of

files stored on a server is given by the expressions in Equation

8.

𝑝𝑟𝑖𝑚𝑎𝑟𝑖𝑒𝑠 (𝑛) =
𝑛

2,69
 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑖𝑒𝑠(𝑛) =

1,69 𝑛

2,69
 (8)

And since the distribution following the primary and

secondary files [17] is known [18], we can compute the

average of these values (see Equation 9).

𝐸𝑝𝑟𝑖𝑚(𝑋) = 𝑒7,63+
1,0012

2

= 3398,1977 (9)

𝐸𝑠𝑒𝑐𝑜𝑛(𝑋) = 𝑒8,215+
1,462

2

= 10730,0125

Using the number of files expressed in Table 3 we can

compute the average storage required in each server, as show

in Table 4.

TABLE IV

AVERAGE STORAGE NEEDED IN EACH SERVER

Number of servers TREP SPREP DPREP

4 servers 79,39 GB 63,82 GB 62,27 GB

5 servers 79,39 GB 60,71 GB 58,66 GB

6 servers 79,39 GB 58,63 GB 49,06 GB

7 servers 79,39 GB 58,65 GB 44,42 GB

8 servers 79,39 GB 58,65 GB 44,68 GB

9 servers 79,39 GB 58,65 GB 44,73 GB

10 servers 79,39 GB 58,13 GB 44,85 GB

Fig. 10 shows graphically the average storage needed in

each server in the different evaluations performed.

Fig. 10. Average Storage needed in each server

If we also consider the number of servers in each of the

simulations, it is possible to compute the average total number

of files stored in the Web site, as shown in Table 5.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 3

-87-

TABLE V

AVERAGE TOTAL NUMBER OF FILES IN THE WEB SITE

Number of servers TREP SPREP DPREP

4 servers 41600 33444 32628

5 servers 52000 39766 38423

6 servers 62400 46088 38562

7 servers 72800 53784 40732

8 servers 83200 61468 46828

9 servers 93600 69152 52739

10 servers 104000 76149 58761

Allowing us to establish the percentage of space needed in

the different solutions versus TREP, as shown in Table 6.

TABLE VI

 USAGE RATE VERSUS TREP

Number of servers TREP SPREP DPREP

4 servers 100% 80,39 % 78,43 %

5 servers 100% 76,47 % 73,89 %

6 servers 100% 73,86 % 61,80 %

7 servers 100% 73,88 % 55,95 %

8 servers 100% 73,88 % 56,28 %

9 servers 100% 73,88 % 56,34 %

10 servers 100% 73,22 % 56,50 %

These rates are graphically shown in Figure 11.

Fig. 11. Usage Rate versus TREP

VI. CONCLUSIONS

This paper presented a web cluster architecture allowing

partial replication of website contents with dynamic adaptation

of the number of replicas.

A prototype was developed to test the architecture. The

proposed structure is intended to provide fault tolerance,

simplicity and distribution taking advantage of the use of an

agent architecture.

The results of this prototype are presented in this article,

evaluating both performance and storage capacity.

We have seen no evidence to reject the hypothesis that the

Request Service Time does not depend on content allocation

policy. Even if we admit that there are differences, they never

exceed 0.03%.

It has been shown that the necessary storage volume is

much greater in the case of full replication that in the other

cases. Dynamic partial replication is placed at the other

extreme, and storage capacity required is the least of all

strategies studied.

REFERENCES

[1] T. Berners-Lee, R. Fielding and H. Frystyk, “Hypertext Transfer

Protocol - HTTP/1.0. RFC 1945”, Internet Engineering Task Force,
Mayo 1996.

[2] V. Cardellini, E. Casalicchio, M. Colajanni, and P.S. Yu, “The state of

the art in locally distributed Web-server systems”, ACM Computing
Surveys, vol. 34(2):263–311, 2002.

[3] T. Schroeder, S. Goddard and B. Ramamurthy, “Scalable web server

clustering technologies”, IEEE Network, vol. 14(3), pp. 38–45, Mayo
2000.

 [4] García, J.D., Carretero, J., García, F., Singh, D.E. y Fernández, J.: “A

Highly Available Cluster of Web Servers with Increased Storage
Capacity”, XVII Jornadas de Paralelismo, pp. 109-114, Albacete,

Septiembre 2006.

[5] Garcia, J.D., Carretero, J., Garcia, J., Sánchez, L.M. y Garcia, F.: “A
Web Cluster Architectural Proposal for Balancing Storage Capacity and

Reliability by using Partial Replication”, International Journal of

Computer Systems Science and Engineering, vol. 28(3):191-202, CRL
Publishing Ltd, Reino Unido, Mayo 2013.

[6] Torres, E., Sanjuan, O., Joyanes, L., García, J.D. y González, R.: An

Architecture For Management Of Distributed And Redundant Web
Storage With Intelligent Agent Systems And Emerging Techniques. En

IEEE Latin America Transactions, vol. 6(6):524-528, IEEE Xplore,

Octubre 2008.
[7] J.D. Garcia, “Propuestas Arquitectónicas para servidores Web

distribuidos con réplicas parciales”, Ph.D. dissertation, Computer

Science Dept., Universidad Carlos III de Madrid, Junio 2005.
[8] Gutierrez, C.: “An Analysis Architecture for Communications in

Multi-agent Systems”, International Journal of Artificial Intelligence

and Interactive Multimedia (IJIMAI), vol 2(1):65-72, 2013.
[9] Torres, E., Sanjuan, O., Joyanes, L., García, J.D. y Pelayo B.C.: “A

Multi-Agent based Proposal for the Management of Distributed and

Redundant Storage”. Proceedings of the 2008 International Conference
on Artificial Intelligence (ICAI 2008), pp. 566-571, Las Vegas,

Nevada, USA, CSREA Press, Julio 2008.

[10] Torres, E., Sanjuan, O., Joyanes, L., García, J.D., González, R. y Ríos,

S.: “Management of Distributed and Redundant Storage in High

Demand Web Servers for Heterogeneous Networks Access by Agents”,

International Symposium on Distributed Computing and Artificial
Intelligence (DCAI 2008), vol. 50, pp. 123-131, Advances in Soft

Computing, Springer, Enero 2009.

[11] Torres, E., Sanjuan, O., Joyanes, L., García, J.D. y González, R.:
“Arquitectura Para La Gestión De Almacenamiento Web Distribuido Y

Redundante Mediante Sistemas De Agentes Inteligentes Y Técnicas

Emergentes”. 6th International workshop on practical applications on
agents and multi-agent systems (IWPAAMS2007), pp. 319-328,

Salamanca, Noviembre 2007.

[12] Kaage, U., Kahmann V., Jondral F: “An OMNeT++ TCP Model”,
Proceedings of the 15th European Simulation Multiconference (ESM

2001), Praga, Junio 2001.

[13] Núñez, A., Fernández, J., Carretero, J., García, J.D. y Prada, L.:
“SIMCAN: A SIMulator Framework for Computer Architectures and

Networks!, First International Workshop on OMNeT++, pp. 8,

Marsella, Francia, Marzo 2008.

[14] Núñez, A., Fernández, J., Carretero, J., García, J.D. y Prada, L.: “New

Techniques for Modelling File Data Distribution on Storage Nodes”,
41st Annual Simulation Symposium, pp. 175–182, Ottawa, Canada,

Abril 2008.

[15] Kirsche, M. y Schnurbusch, M.: “A new IEEE802.15.4 Simulation
Model for OMNeT++/INET”, First OMNeT++ Community Summit,

Hamburg, September 2014.

[16] Çetin, G., Çetin, A. y Özkaraca, O.: “The analisys of Layer-2 Handover
performance for mobile IPV6 using OMNeT++ Simulation Tool”,

Mugla Journal of Science and Technology, vol. 1(1):34-38, 2015.

[17] Mah, B.A.: “An empirical model of HTTP network traffic”,
Proceedings of the Conference on Computer Communications

(INFOCOM’97), vol. 2, pp. 592-600, Kobe, Japón, 1997.

[18] Choi, H.K. y John O.L.: “A behavioral model of web traffic”,
Proceedings Seventh International Conference on Network Protocols

(ICNP’99), pp. 327-334, Toronto, Ontario, Canada, IEEE, Octubre

1999.
[19] Barford, P. y Crovella, M.: “Generating representative web workloads

for network and server performance evaluation”, Performance

Evaluation Review, vol. 26(1):151-160, Junio 1998.

Regular Issue

-88-

[20] V. Cardellini, M. Colajanni, and P.S. Yu, “Geographic load balancing

for scalable distributed Web Systems”, Proceedings of the 8th
International Symposium on Modeling, Analisys and Simulation of

Computer and Telecommunication Systems (MASCOTS’00), pp. 20-27,

IEEE, San Francisco, CA, USA, Agosto 2002.
[21] V. Cardellini, “Request redirection algorithms for distributed web

systems”, IEEE Transactions on Parallel and Distributed Systems, vol

14(4), pp. 355-368, Abril 2003.
[22] Wallerich, J.: “Design and implementation of a www workload

generator for the ns-2 network simulator”,

http://www.net.t-labs.tu-berlin.de/~joerg/nsweb/doku/, Noviembre
2001. [consulta 1 de Abril de 2015].

[23] Stalings, W.: “Operating Systems: Internals and Design Principles (8th

Edidtion)”, Ed. Prentice Hall, 2015.
[24] Carretero, J., Miguel, P., García, F. y Pérez, F.: Sistemas Operativos:

una visión aplicada 2ª Edición, Ed. McGraw-Hill 2007.

D. Enrique Torres has a degree in Computer Science

from the Polytechnic University of Madrid. He has been

Assistant Professor at the Faculty of Computer Science

from the Pontifical University of Salamanca. Ha has also

been an Adjunct Professor at University Carlos III of

Madrid. He is currently a systems engineer at the Madrid
Council.

Dr. José Daniel García has a degree in Computer
Science from the Polytechnic University of Madrid and a

Computer Science PhD from Universidad Carlos III de
Madrid.He is Associate Professor in Computer Science

Department from University Carlos III of Madrid, where

he previously served as Assistant Professor. Previously he
was Lecturer in the Computer Science Faculty from

Pontifical University of Salamanca. Dr. García has

worked as consultant and software engineer in projects for several
international companies like FCC, Siemens, DMR Consulting, Telefónica, or

ING Bank. His main research interests including parallel and distributed

systems, programming languages and programming models for applications

improvement.

Dr. Oscar Sanjuan has a degree in Computer Science
from the Pontifical University of Salamanca, where he

also earned his PhD in Computer Science Engineering,

and he is PhD in Computer Science from Oviedo
University. He has been Area Director of Software

Engineering at the Pontifical University of Salamanca,

lecturer and researcher at the University of Oviedo and
Assistant Professor at the University Carlos III of Madrid. Currently he is

Engineering Director at ElasticBox Inc.

Dr. Luis Joyanes Aguilar has a degree in Physics

Science from the Complutense University of Madrid and

he has a degree in Military Higher Education from
General Military Academy of Zaragoza. He earned his

PhD in Computer Science from Oviedo University and his

PhD in Sociology from Pontifical University of
Salamanca. Also, he is Honorary Doctor from the Private

University Antenor Orrego of Trujillo in Perú. He is

Professor of Languages and Computer Systems from Pontifical University of
Salamanca and he is member of Knowledge Management Committee of AEC

(Spanish Quality Association) and AENOR (Spanish Agency for

Standardization).

Dr. Rubén González has a degree in Computer Science

from the Pontifical University of Salamanca, where he
earned his PhD in Computer Science Engineering. He has

been Area Director of Operating Systems at the Pontifical

University of Salamanca and Graduate Director from
Higher School of Engineering and Architecture from

Pontifical University of Salamanca. Currently, he is

Director of the Higher School of Engineering from
International University of La Rioja and Director of the AENOR Chair in

Certification and Quality and Technology Standards.

