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Abstract — We introduce a hybrid system composed of a 

convolutional neural network and a discrete graphical model for 

image recognition. This system improves upon traditional sliding 

window techniques for analysis of an image larger than the 

training data by effectively processing the full input scene 

through the neural network in less time. The final result is then 

inferred from the neural network output through energy 

minimization to reach a more precize localization than what 

traditional maximum value class comparisons yield. These results 

are apt for applying this process in a mobile device for real time 

image recognition. 

 
Keywords — Computer vision, Image recognition, Deep neural 

networks, Graphical models, Mobile device. 

 

I. INTRODUCTION 

YBRIFD intelligent systems have consistently shown 

benefits that outperform those of their individual 

components in many tasks, especially when used along 

neural computing [1]. In recent years, two main areas of 

computer vision have gained considerable strength and 

support: On one side, soft computing techniques based on non-

exact but very accurate machine learning models like neural 

networks, which have been successful for high level image 

classification [7]. Contrasting these systems, computer vision 

techniques modeled by graphical models have enjoyed great 

reception when performing low level image processing tasks 

such as image completion [6]. In this paper, we combine both 

of these techniques to successfully classify and localize a 

region of interest within an input image. 

We use Convolutional Neural Networks (CNN) [3] for the 

classification of image content. CNNs have become a general 

solution for image recognition with variable input data, as their 

results have outclassed other machine learning approaches in 

large scale image recognition tasks [4]. Paired to this CNN 

classifier, we use energy minimization of a Markov Random 

Field (MRF) [8] for inference and localization of the target 

within the image space. Graphical models such as this have 

been implemented in areas of computer vision where the 

relationship between neighboring regions plays a crucial role 

[2]. 

We review the implementation of this system specifically 

within a mobile device. With the increasing use of mobile 

hardware, it has become a priority to provide these devices 

with computer vision capabilities. Due to the high 

computational requirements, this need has mostly been met by 

outsourcing the analysis to a remote server over the Internet. 

This approach introduces large delays and is hardly 

appropriate when interactivity and responsiveness are 

paramount. Embedded environments have intrinsic 

architecture constraints which require algorithms to make the 

best use of the available computing capacity. The proposed 

system exploits this specific platform by reducing the overall 

required memory throughput via a parallel execution approach. 

This is achieved by applying layer computations over the 

entire image space, as opposed to running smaller patches 

individually, as is common with the sliding window approach 

normally used in this type of image classification. 

The structure of this work is as follows: In Section 2, some 

background knowledge is reviewed detailing the functionality 

of CNNs and window analysis in general. We then introduce in 

Section 3 an optimized approach for the techniques previously 

discussed, including the architecture constraints that must be 

made to implement the proposed system.  Section 4 goes over 

the discretization of the system and the inference process for 

obtaining the final output result. Section 5 continues with the 

results obtained from the proposed method and a brief 

comparison with other alternative approaches. Finally, Section 

6 concludes by discussing the observations made and some 

additional applications where this system can be used in. 

II. BACKGROUND 

In this section, a brief description of CNNs and their layer 

types is given, as well as an overview of the traditional sliding 

window approach. 

A. Convolutional Neural Networks 

The network on which our system is based upon is a 

standard CNN. Figure 1 depicts the layer structure of such a 

network, and it is the reference architecture used throughout 

this paper to describe the concepts of the framework presented. 
 

In the initial stages of the CNN, a neuron consists of a two-

dimensional grid of independent computing units, each 

producing an output value. As a result, every neuron will itself 

output a grid of numerical values, a data structure in referred 

to as a map. When applying CNNs to image analysis, these 
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maps represent an internal state of the imageafter being 

processed through a connective path leading to that particular 

neuron. Consequently, maps will usually bear a direct 

positional and feature-wise relationship to the input image 

space. As data progresses through the network, 

 

 

Fig. 1.  A typical convolutional neural network architecture, with three input 

neurons for each color channel of an analyzed image patch, two feature 

extraction stages of convolutional and max-pooling layers, and two linear 

layers to produce a final one-vs-all classification output. 

 

however, this representation turns more abstract as the 

dimensionality is reduced. Eventually, these maps are passed 

through one or more linear classifiers, layers consisting of 

traditional single unit neurons which output a single value 

each. For consistency, the outputs of these neurons are treated 

as single pixel image maps, although they are nothing 

more than scalar values in . 

B. CNN Layer Types 

The first layer in the network consists of the image data to be 

analyzed, usually composed as the three color channels. The 

notation is used to describe all subsequent layers, 

where is the neuron map count of layer , 

denotes the layer type group (Convolutional, 

Max-Pooling, and Linear), and is the parameter value for that 

layer. 

 

Fig. 2.  Visualization of the first three neuron maps at each stage of the CNN. 

Note the data size reduction induced at each stage. The output of this 

execution consists of two scalar values, each one representing the likelihood 

that the analyzed input image belongs to that neuron’s corresponding class. In 

this case the logo has been successfully recognized by the higher valued 

output neuron for class “Logo”. 

 

The first part of every feature extraction stage is a 

convolutional layer. Here, each neuron linearly combines the 

convolution of one or more preceding maps. The result is a 

map slightly smaller than the input size by an amount known 

as the kernel padding, which arises from the boundary 

conditions of the valid convolution algorithm. It is defined as 

, where is the convolutional kernel size of layer . 

Therefore, the layer's map size will be given 

by , where is the the preceding 

layer's map size. 

A max-pooling neuron acts on a single map from a 

preceding convolutional neuron, and its task is to subsample a 

pooled region of size . The result is a map size that is 
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inversely proportional to said parameter by . 

The data may then be passed to one or more 

additional feature extractors. 

Linear layers classify feature maps extracted on preceding 

layers through a linear combination as in a perceptron -- 

always working with scalar values -- such that at every 

layer of this type. 

Finally, the output of the final classification layer decides 

the best matching label describing the input image. Fig. 2 

shows the information flow leading to this classification for a 

given image patch, where the CNN has been trained to identify 

a particular company logo. 

C. The Sliding Window Method 

Recognition of images larger than the CNN input size is 

achieved by the sliding window approach. This algorithm is 

defined by two quantities, the window size , usually fixed to 

match the CNN's designed input size; and the window stride , 

which specifies the distance at which consecutive windows are 

spaced apart. This stride distance establishes the total number 

of windows analyzed for a given input image. For an image 

of size , the window count is given by: 

 
Figure 3 shows this method applied on an input image 

downsampled to , extracting windows of for 

the simple case where . A network analyzing this 

image would require 40 executions to fully analyze all 

extracted windows. The computational requirement is further 

compounded when a smaller stride is selected -- an action 

necessary to improve the resolving power of the classifier: 

at , 464 separate CNN executions would be required. 

 

 

Fig. 3.  An overview of the sliding window method, where an input image is 

subdivided into smaller overlapping image patches, each being individually 

analyzed by a CNN. A classification result is then obtained for each 

individual window. 

III. OPTIMIZED NETWORK EXECUTION 

The method proposed introduces a framework where the 

stride has no significant impact on the execution time of 

the stages, as long as the selected stride is among a 

constrained set of possible values. This is achieved by 

allowing layers to process the full image as a single shared 

map instead of individual windows. Constraints in the possible 

stride values will result in pixel calculations to be correctly 

aligned throughout the layers. 

A. Shared Window Maps 

CNNs have a built-in positional tolerance due to the reuse of 

the same convolutional kernels over the entire neuron map. As 

a result of this behavior, their output is independent of any 

pixel offset within the map, such that overlapping windows 

will share convolved values. This is demonstrated in Fig. 4. 

 

Fig. 4.  Two adjacent windows extracted from an input image, passed through 

the 12C5 + 12MP5 feature extractor. A detailed view of the convolved maps 

in the overlapping top-right and bottom-left quarters of each window shows 

that these areas fully match. 

 

This leads to the possibility of streamlining the feature 

extractors by running their algorithms over the full input image 

at once. Hence, each neuron will output a single map 

shared among all windows, where subdivisions of this map 

would normally match the outputs of the corresponding 

windows, had they been executed separately as in the 

traditional method. This greatly reduces the expense of 

calculating again convolutions on overlapping regions of each 

window. Figure 5 shows an overview of the shared map 

process, which passes the input image in its entirety through 

each stage of the network. 

By doing this, the output layer now produces a continuous 

and localized class distribution over the image space, a result 

which contrasts greatly to that of a single classification value 

as was previously seen in Fig. 2. The output of this execution 
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consists of image maps where each pixel yields the relative 

position of all simultaneously classified windows. 

Similar to the per-window execution method, the intensity 

value of a pixel in the output map represents the classification 

likelihood of the corresponding window. Note how the relative 

position of the logo in the input image has been discovered 

after only one shared map execution of the network. An 

account of the window size and stride is also on 

 

Fig. 5.  The shared map execution method for a convolutional neural network, 

where each layer processes an entire image in a single pass, and each neuron 

is now able to process maps with dimensions that far exceed the layer’s 

designed input size. 

 

display, illustrating how it evolves after each layer, while the 

total window count remains the same. Here, the 

correspondence of each window in the input image can 

be traced to each one of the pixels in the output maps. 

 

B. Window Configuration 

The operation of the shared map process relies greatly on 

the details of the dimensionality reduction occurring at each 

layer within the network. For this reason, it is necessary to lay 

certain constraints that must be enforced when choosing the 

optimum sliding window stride. 

At each layer, the window size and stride are reduced until 

 
Fig. 6.  The CNN layers and their effect on the window pixel space, illustrated 

in 

one dimension for simplicity. Two successive 32×32 windows W1 and W2 are 

shown. Overlapping pixels at each layer are shaded. Starting with an input 

layer window stride T0 = 4, the final output layer results in a packed T6 = 1 

window stride, so that each output map pixel corresponds to a positional shift 

of 4 pixels in the input windows, a relationship depicted by the column paths 

traversing all layers. 

 

they eventually become single pixel values at the final linear 

layers. The amount of reduction at each stage varies according 

to the type of the layer and its parameters. All of these 

quantities can be found in a well defined manner as given by: 
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Where the window size and its stride at layer depends on 

the various parameters of the layer and the window size and 

stride values at the preceding layer. This equation set can 

be applied over the total number of layers of the network, 

while keeping as the target constraint that the final size and 

stride must remain whole integer values. By regressing these 

calculations back to the input layer , one can find that the 

single remaining constraint at that layer is given by: 

 

 
 

In other words, the input window stride must be perfectly 

divisible by the product of the pooling size of all max-pooling 

layers in the network. Choosing the initial window stride in 

this manner, will ensure that every pixel in the final output 

map is correctly aligned throughout all shared maps and 

corresponds to exactly one input window. Fig. 6 follows the 

evolution of the window image data along the various layers of 

the sample network architecture, showing this pixel alignment 

throughout the CNN. 

 

IV. DISCRETE INFERENCE OF CNN OUTPUT 

The output from the convolutional neural network as seen in 

Fig. 5 consists of multiple individual maps, where each one 

embodies a visual depiction of the relative confidence, per-

class, that the system has for every window sampled. 

The common practice to obtain a final classification from an 

output value set as seen in Fig. 5 is to identify which class has 

a higher output value from the CNN at each each window 

(here, each pixel in the output map). While efficient, results 

from this procedure are not always ideal because they only 

take into account each window separately. 

Furthermore, maximum value inference is prone to false 

positives over the full image area. Due to their non-exact 

nature, neural network accuracy can decrease by finding 

patterns in random stimuli which eventually trigger neurons in 

the final classification layer. However, such occurrences tend 

to appear in isolation around other successfully classified 

image regions. It is therefore possible to improve the 

performance of the classifier by taking into account nearby 

windows. 

There exist many statistical approaches in which this can be 

implemented, such as (i) influencing the value of each window 

by a weighted average of neighboring windows, or (ii) 

boosting output values by the presence of similarly classified 

windows in the surrounding area. However, we propose 

discrete energy minimization through belief propagation as a 

more general method to determine the final classification 

within a set of CNN output maps. The main reason being that 

graphical models are more flexible in adapting to image 

conditions and can usually converge on a globally optimal 

solution. 

A. Pairwise Markov Random Field Model 

Images can be treated as an undirected cyclical 

graph , where nodes represent an entity such 

as a pixel in the image, and graph edges represent the 

relationship between these nodes. If, for simplicity, 4-

connectivity is used to represent the relationship between 

successive nodes in a graph; then each node will be connected 

to four others corresponding to its neighbors above, below, 

and to each side of the current element. 

The output space of the convolutional neural network can 

therefore be represented in this manner through a graph. 

However, instead of describing pixel intensity values, each 

node in the graph represents the classification state of the 

corresponding window. This state takes on a discrete value 

among a set of class labels corresponding 

to the classification targets of the CNN. Thus, each node in the 

graph can take on one of several discrete values, expressing 

the predicted class of the window that the node represents. Fig. 

7 displays the structure of such a graph. 

 

 
Fig. 7.  A subset of the MRF graph G formed by the CNN output space, where 

each node ni represents the classification state of a corresponding window 

analyzed with the network, whose outputs are implemented into this system as 

the observed hidden variables O. Nodes have a 4-connectivity relationship 

with each other represented by the edges eij thus forming a grid-like cyclical 

graph. 

 

It can be seen that if nodes represent classification 

outcomes, there is a strong relationship between them. The 

reason is that continuity throughout a map tends to be 

preserved over neighboring regions due to strong local 

correlation in in input images. This inflicts a Markovian 
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property in the graph nodes where there is a dependency 

between successive nodes. Therefore, this graph follows the 

same structure as an MRF, and any operations available to this 

kind of structure will be likewise applicable to the output map. 

B. Energy Allocation 

To implement energy minimization on an MRF, it is 

necessary to assign energy potentials to each node and edge. 

These energies are usually adapted from observed variables, 

and in this case, they correspond to the values of the output 

maps and combinations thereof. Therefore, MRF optimization 

over a graph can be carried out by minimizing its Markov 

random energy , given by: 

 

 
 

Here, corresponds to the singleton energy potential of 

node , and is a pairwise potential between 

nodes and . Starting from the CNN output map 

observations, the singleton potentials can be assigned as: 

 

 
 

 
 

Where is the total number of classes in set (2 in the 

sample CNN architecture), and is the observed CNN value 

for window and class . In this manner, 

each value is an MSE-like metric that measures how far off 

from ideal training target values did the CNN classify 

window as. Thus, a lower potential value will be assigned to 

the most likely class, while a higher potential value will be 

given to other possible classes at this node. 

Pairwise potentials can be defined as: 

 

 
 

 
 

Where each value is a straightforward distance metric 

that measures the jump in CNN output values when switching 

from class to class between windows and . Thus, these 

potentials will be small if the same class is assigned to both 

nodes, and large otherwise. Fig. 8 shows all energy 

assignments per node pair. 

 
Fig. 8.  A detail of the potential energies assigned to each of two nodes {n1 , 

n2} connected by edge e12 . The singleton potentials Θi
a correspond to the 

energy associated with node i if assigned to class a, and the pairwise 

potentials Θij
ab are the changes in energy that occur by assigning class a to 

node ni and class b to node nj . 

 

It is worth noting that these pairwise potentials between 

neighboring windows (nodes) are the only feature that sets 

apart this process from the traditional winner-takes-all 

approach which would otherwise be implemented through the 

minimization of the energy in the singleton potentials by 

themselves. 

C. Energy Minimization by Belief Propagation 

Applying Belief Propagation [5] to find the lowest possible 

energy state of the graph will now yield an equilibrium of class 

assignments throughout the image output space. 

Due to the cycles inherent of image-bound graphs, a special 

variation of the algorithm must be used, in this case Loopy 

Belief Propagation [5]. This variation requires the 

minimization to be run several times until the solution 

converges and an equilibrium is found. However, due to 

various existing optimizations for this algorithm, this process 

is very straightforward and can be solved in polynomial time. 

 

V. RESULTS 

The test application is developed for the Android mobile OS 

as an OpenGL ES shader which makes use of the available 

computing capabilities of the device GPU. The main logic of 

the system is placed within a fragment shader running the 

CNN per-pixel over a Surface Texture memory object. The 

test device is equipped with a quad core 1.3 GHz Cortex-A9 

CPU with a 12-core 520 MHz Tegra 3 GPU. This SoC 

architecture embeds 1 Gb of DDR2 RAM shared by both the 

CPU and GPU. 

The test system executes the same CNN architecture 

described in Fig. 1, except for the classification layer having 

32 output neurons corresponding to one background label and 

31 different logo labels. This network is exectued over 8 

simultaneous images forming a multi-scale image 

pyramid. The energy minimization technique as described in 

Section 4 is then applied, but over a 3D graph formed with 6-
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connectivity between nodes such that each window is also 

aware of window classifications at the corresponding larger 

and smaller scale steps. Table 1 gives a summary of the results 

obtained from this setup. 

 
Fig. 9.  Comparison of the final “Logo” classification and localization, 

applying the classical maximum value per class extraction vs. our proposed 

energy minimization inference method on the two CNN output maps 

introduced in Figure 5 

 

It is of great interest to note the final configuration. 

Regardless of the fact that there is no overlap at this stride, a 

3.0 speedup is still observed over running the windows 

individually. This is due to the inherent reduction in memory 

bandwidth through the system's pipelined execution approach, 

where the entire image needs to be loaded only once per 

execution. This contrasts the traditional approach where 

loading separate windows into memory at different times 

requires each to be individually sliced from the original 

memory block -- a very expensive operation in the limited 

memory throughput of mobile devices. 

Server platforms have a restriction in the PCIe bus speed 

between the CPU and GPU, but instead offer very fast local 

memory access within the GPU. As a result, these architectures 

would allow window extraction at lower relative latencies. The 

SoC architecture of mobile devices do not face similar CPU to 

GPU memory bottlenecks, as these chips are usually located 

within the same circuit. Their lower energy requirements, 

however, force local memory access to be radically slower. 

Therefore, this architecture favors the parallel usage of data 

blocks, a fact which the system we have presented exploits in 

full. As such, we consider it to be a mobile-first oriented 

algorithm, although it would offer likewise improvements in 

other platforms. 

The results of the inference system are more of a qualitative 

nature, as it is difficult to objectively establish a ground truth 

basis for such experiments. This system aims to localize 

classified windows, therefore it is subject to an interpretation 

of which windows cover enough of the recognition target to be 

counted as a true positive. Regardless, Table 2 gives an 

indicative comparison of the system against the competing 

techniques previousy described. Fig. 9 shows a visual 

comparison. 

 

VI. CONCLUSIONS 

A system for the optimization of convolutional neural 

networks has been presented for the particular application of 

mobile image recognition. The performance figures presented 

in Table 1 correspond to a device architecture which, at the 

time of this work, is a commonly available specification on 

end user devices. It must be noted that with the rapid growth 

that is being observed in mobile hardware capabilities, the 

effects of these optimizations are likely to grow in their 

significance. GPUs capable of new technology will extend the 

reach of the parallel-wise optimizations described. Relevant 

advancements in this area would include things such as 

heterogeneous parallel processing via OpenCL EP and zero-

copy memory transfer between the camera and GPU through 

tighter SoC integration. General availability of such 

technologies will open an ever larger possibility of mobile 

computer vision opportunities. 

Although a simple logo classification task was used here as 

a sample application, CNNs allow for many other image 

TABLE I 

SPEEDUP RESULTS 

T0 W (L) W (P) OC T (PW) T (SM) Speedup 

4×4 464 3,712 98% 29,730 1,047 28.4x 

8×8 112 896 94% 7,211 387 18.6x 

12×12 60 480 86% 3,798 311 12.2x 

16×16 32 256 75% 2,051 240 8.5x 

20×20 24 192 61% 1,536 252 6.1x 

24×24 15 120 44% 945 203 4.7x 

28×28 15 120 23% 949 200 4.7x 

32×32 8 64 0% 514 171 3.0x 

 

Results of tests with several input layer stride T0 configurations, from the 

closest packed 4×4 to the non-overlapping 32×32 layouts. A total window 

count at each pyramid level W (L), and over the full 8 level pyramid W (P), as 

well as the window overlap coverage OC per input map is given for each of 

the stride selections. An average over 20 test runs for each of these 

configurations was taken as the execution time in milliseconds for each of the 

methods described herein – the traditional per-window execution method T 

(PW), and our shared map technique T (SM). A speedup factor is calculated 

showing the performance improvement of our method over the other. 

 

TABLE II 

INFERENCE RESULTS 

Algorithm Accuracy PPV F1 

Maximum Value 0.942 0.341 0.498 

Weighted Average 0.964 0.391 0.430 

Neighbor Boosting 0.972 0.489 0.591 

Energy Minimization 0.981 0.747 0.694 

Results of various inference algorithms for the final classification, 

describing the Accuracy ( TP + TN / ALL ), PPV ( TP  / TP + FP ), and F1 ( 

2TP / 2TP + FP + FN ) metrics. 
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recognition tasks to be carried out. Most of these processes 

would have great impact on end users if implemented as real 

time mobile applications. Some examples where CNNs have 

been successfully used and their possible mobile 

implementations would be (i) text recognition for visually 

interactive language translators, (ii) human action recognition 

for increased user interactivity in social applications, or even 

(iii) traffic sign recognition for embedded automotive 

applications. Any of these applications could be similarly 

optimized and discretized by the system presented here. 

In addition to the CNN classifier, the MRF model is very 

flexible as well and its implementation can be adjusted to 

domain-specific requirements as needed by each application. 

For example, a visual text recognizer might implement 

pairwise energy potentials which are modeled with the 

probabilistic distribution of character bigrams or n-grams over 

a corpus of text, thereby increasing the overall text recognition 

accuracy. 

Furthermore, although the analysis of a single image has 

been discussed, this system is similarly extensible to multiple 

images processed together. The most common example of this 

is the analysis of a multi-scale image pyramid, something vital 

within mobile applications as variable distances between the 

camera and its target will cause the object to be observed at 

different sizes within the analyzed image. In such a case, the 

MRF would be extended to a 6-connectivity 3D grid, where 

nodes would be equally aware of window classifications at the 

corresponding larger and smaller scale steps. 

Therefore, we believe this to be a general purpose mobile 

computer vision framework which can be deployed for many 

different uses within the restrictions imposed by embedded 

hardware, but also encouraging the limitless possibilities of 

mobile applications. 
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