
Regular Issue

-28-

Abstract — We introduce a hybrid system composed of a

convolutional neural network and a discrete graphical model for

image recognition. This system improves upon traditional sliding

window techniques for analysis of an image larger than the

training data by effectively processing the full input scene

through the neural network in less time. The final result is then

inferred from the neural network output through energy

minimization to reach a more precize localization than what

traditional maximum value class comparisons yield. These results

are apt for applying this process in a mobile device for real time

image recognition.

Keywords — Computer vision, Image recognition, Deep neural

networks, Graphical models, Mobile device.

I. INTRODUCTION

YBRIFD intelligent systems have consistently shown

benefits that outperform those of their individual

components in many tasks, especially when used along

neural computing [1]. In recent years, two main areas of

computer vision have gained considerable strength and

support: On one side, soft computing techniques based on non-

exact but very accurate machine learning models like neural

networks, which have been successful for high level image

classification [7]. Contrasting these systems, computer vision

techniques modeled by graphical models have enjoyed great

reception when performing low level image processing tasks

such as image completion [6]. In this paper, we combine both

of these techniques to successfully classify and localize a

region of interest within an input image.

We use Convolutional Neural Networks (CNN) [3] for the

classification of image content. CNNs have become a general

solution for image recognition with variable input data, as their

results have outclassed other machine learning approaches in

large scale image recognition tasks [4]. Paired to this CNN

classifier, we use energy minimization of a Markov Random

Field (MRF) [8] for inference and localization of the target

within the image space. Graphical models such as this have

been implemented in areas of computer vision where the

relationship between neighboring regions plays a crucial role

[2].

We review the implementation of this system specifically

within a mobile device. With the increasing use of mobile

hardware, it has become a priority to provide these devices

with computer vision capabilities. Due to the high

computational requirements, this need has mostly been met by

outsourcing the analysis to a remote server over the Internet.

This approach introduces large delays and is hardly

appropriate when interactivity and responsiveness are

paramount. Embedded environments have intrinsic

architecture constraints which require algorithms to make the

best use of the available computing capacity. The proposed

system exploits this specific platform by reducing the overall

required memory throughput via a parallel execution approach.

This is achieved by applying layer computations over the

entire image space, as opposed to running smaller patches

individually, as is common with the sliding window approach

normally used in this type of image classification.

The structure of this work is as follows: In Section 2, some

background knowledge is reviewed detailing the functionality

of CNNs and window analysis in general. We then introduce in

Section 3 an optimized approach for the techniques previously

discussed, including the architecture constraints that must be

made to implement the proposed system. Section 4 goes over

the discretization of the system and the inference process for

obtaining the final output result. Section 5 continues with the

results obtained from the proposed method and a brief

comparison with other alternative approaches. Finally, Section

6 concludes by discussing the observations made and some

additional applications where this system can be used in.

II. BACKGROUND

In this section, a brief description of CNNs and their layer

types is given, as well as an overview of the traditional sliding

window approach.

A. Convolutional Neural Networks

The network on which our system is based upon is a

standard CNN. Figure 1 depicts the layer structure of such a

network, and it is the reference architecture used throughout

this paper to describe the concepts of the framework presented.

In the initial stages of the CNN, a neuron consists of a two-

dimensional grid of independent computing units, each

producing an output value. As a result, every neuron will itself

output a grid of numerical values, a data structure in referred

to as a map. When applying CNNs to image analysis, these

Neural Networks through Shared Maps in

Mobile Devices

William Raveane, María Angélica González Arrieta,

Universidad de Salmanca, Spain

H

DOI: 10.9781/ijimai.2014.314

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 1

-29-

maps represent an internal state of the imageafter being

processed through a connective path leading to that particular

neuron. Consequently, maps will usually bear a direct

positional and feature-wise relationship to the input image

space. As data progresses through the network,

Fig. 1. A typical convolutional neural network architecture, with three input

neurons for each color channel of an analyzed image patch, two feature

extraction stages of convolutional and max-pooling layers, and two linear

layers to produce a final one-vs-all classification output.

however, this representation turns more abstract as the

dimensionality is reduced. Eventually, these maps are passed

through one or more linear classifiers, layers consisting of

traditional single unit neurons which output a single value

each. For consistency, the outputs of these neurons are treated

as single pixel image maps, although they are nothing

more than scalar values in .

B. CNN Layer Types

The first layer in the network consists of the image data to be

analyzed, usually composed as the three color channels. The

notation is used to describe all subsequent layers,

where is the neuron map count of layer ,

denotes the layer type group (Convolutional,

Max-Pooling, and Linear), and is the parameter value for that

layer.

Fig. 2. Visualization of the first three neuron maps at each stage of the CNN.

Note the data size reduction induced at each stage. The output of this

execution consists of two scalar values, each one representing the likelihood

that the analyzed input image belongs to that neuron’s corresponding class. In

this case the logo has been successfully recognized by the higher valued

output neuron for class “Logo”.

The first part of every feature extraction stage is a

convolutional layer. Here, each neuron linearly combines the

convolution of one or more preceding maps. The result is a

map slightly smaller than the input size by an amount known

as the kernel padding, which arises from the boundary

conditions of the valid convolution algorithm. It is defined as

, where is the convolutional kernel size of layer .

Therefore, the layer's map size will be given

by , where is the the preceding

layer's map size.

A max-pooling neuron acts on a single map from a

preceding convolutional neuron, and its task is to subsample a

pooled region of size . The result is a map size that is

Regular Issue

-30-

inversely proportional to said parameter by .

The data may then be passed to one or more

additional feature extractors.

Linear layers classify feature maps extracted on preceding

layers through a linear combination as in a perceptron --

always working with scalar values -- such that at every

layer of this type.

Finally, the output of the final classification layer decides

the best matching label describing the input image. Fig. 2

shows the information flow leading to this classification for a

given image patch, where the CNN has been trained to identify

a particular company logo.

C. The Sliding Window Method

Recognition of images larger than the CNN input size is

achieved by the sliding window approach. This algorithm is

defined by two quantities, the window size , usually fixed to

match the CNN's designed input size; and the window stride ,

which specifies the distance at which consecutive windows are

spaced apart. This stride distance establishes the total number

of windows analyzed for a given input image. For an image

of size , the window count is given by:

Figure 3 shows this method applied on an input image

downsampled to , extracting windows of for

the simple case where . A network analyzing this

image would require 40 executions to fully analyze all

extracted windows. The computational requirement is further

compounded when a smaller stride is selected -- an action

necessary to improve the resolving power of the classifier:

at , 464 separate CNN executions would be required.

Fig. 3. An overview of the sliding window method, where an input image is

subdivided into smaller overlapping image patches, each being individually

analyzed by a CNN. A classification result is then obtained for each

individual window.

III. OPTIMIZED NETWORK EXECUTION

The method proposed introduces a framework where the

stride has no significant impact on the execution time of

the stages, as long as the selected stride is among a

constrained set of possible values. This is achieved by

allowing layers to process the full image as a single shared

map instead of individual windows. Constraints in the possible

stride values will result in pixel calculations to be correctly

aligned throughout the layers.

A. Shared Window Maps

CNNs have a built-in positional tolerance due to the reuse of

the same convolutional kernels over the entire neuron map. As

a result of this behavior, their output is independent of any

pixel offset within the map, such that overlapping windows

will share convolved values. This is demonstrated in Fig. 4.

Fig. 4. Two adjacent windows extracted from an input image, passed through

the 12C5 + 12MP5 feature extractor. A detailed view of the convolved maps

in the overlapping top-right and bottom-left quarters of each window shows

that these areas fully match.

This leads to the possibility of streamlining the feature

extractors by running their algorithms over the full input image

at once. Hence, each neuron will output a single map

shared among all windows, where subdivisions of this map

would normally match the outputs of the corresponding

windows, had they been executed separately as in the

traditional method. This greatly reduces the expense of

calculating again convolutions on overlapping regions of each

window. Figure 5 shows an overview of the shared map

process, which passes the input image in its entirety through

each stage of the network.

By doing this, the output layer now produces a continuous

and localized class distribution over the image space, a result

which contrasts greatly to that of a single classification value

as was previously seen in Fig. 2. The output of this execution

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 1

-31-

consists of image maps where each pixel yields the relative

position of all simultaneously classified windows.

Similar to the per-window execution method, the intensity

value of a pixel in the output map represents the classification

likelihood of the corresponding window. Note how the relative

position of the logo in the input image has been discovered

after only one shared map execution of the network. An

account of the window size and stride is also on

Fig. 5. The shared map execution method for a convolutional neural network,

where each layer processes an entire image in a single pass, and each neuron

is now able to process maps with dimensions that far exceed the layer’s

designed input size.

display, illustrating how it evolves after each layer, while the

total window count remains the same. Here, the

correspondence of each window in the input image can

be traced to each one of the pixels in the output maps.

B. Window Configuration

The operation of the shared map process relies greatly on

the details of the dimensionality reduction occurring at each

layer within the network. For this reason, it is necessary to lay

certain constraints that must be enforced when choosing the

optimum sliding window stride.

At each layer, the window size and stride are reduced until

Fig. 6. The CNN layers and their effect on the window pixel space, illustrated

in

one dimension for simplicity. Two successive 32×32 windows W1 and W2 are

shown. Overlapping pixels at each layer are shaded. Starting with an input

layer window stride T0 = 4, the final output layer results in a packed T6 = 1

window stride, so that each output map pixel corresponds to a positional shift

of 4 pixels in the input windows, a relationship depicted by the column paths

traversing all layers.

they eventually become single pixel values at the final linear

layers. The amount of reduction at each stage varies according

to the type of the layer and its parameters. All of these

quantities can be found in a well defined manner as given by:

Regular Issue

-32-

Where the window size and its stride at layer depends on

the various parameters of the layer and the window size and

stride values at the preceding layer. This equation set can

be applied over the total number of layers of the network,

while keeping as the target constraint that the final size and

stride must remain whole integer values. By regressing these

calculations back to the input layer , one can find that the

single remaining constraint at that layer is given by:

In other words, the input window stride must be perfectly

divisible by the product of the pooling size of all max-pooling

layers in the network. Choosing the initial window stride in

this manner, will ensure that every pixel in the final output

map is correctly aligned throughout all shared maps and

corresponds to exactly one input window. Fig. 6 follows the

evolution of the window image data along the various layers of

the sample network architecture, showing this pixel alignment

throughout the CNN.

IV. DISCRETE INFERENCE OF CNN OUTPUT

The output from the convolutional neural network as seen in

Fig. 5 consists of multiple individual maps, where each one

embodies a visual depiction of the relative confidence, per-

class, that the system has for every window sampled.

The common practice to obtain a final classification from an

output value set as seen in Fig. 5 is to identify which class has

a higher output value from the CNN at each each window

(here, each pixel in the output map). While efficient, results

from this procedure are not always ideal because they only

take into account each window separately.

Furthermore, maximum value inference is prone to false

positives over the full image area. Due to their non-exact

nature, neural network accuracy can decrease by finding

patterns in random stimuli which eventually trigger neurons in

the final classification layer. However, such occurrences tend

to appear in isolation around other successfully classified

image regions. It is therefore possible to improve the

performance of the classifier by taking into account nearby

windows.

There exist many statistical approaches in which this can be

implemented, such as (i) influencing the value of each window

by a weighted average of neighboring windows, or (ii)

boosting output values by the presence of similarly classified

windows in the surrounding area. However, we propose

discrete energy minimization through belief propagation as a

more general method to determine the final classification

within a set of CNN output maps. The main reason being that

graphical models are more flexible in adapting to image

conditions and can usually converge on a globally optimal

solution.

A. Pairwise Markov Random Field Model

Images can be treated as an undirected cyclical

graph , where nodes represent an entity such

as a pixel in the image, and graph edges represent the

relationship between these nodes. If, for simplicity, 4-

connectivity is used to represent the relationship between

successive nodes in a graph; then each node will be connected

to four others corresponding to its neighbors above, below,

and to each side of the current element.

The output space of the convolutional neural network can

therefore be represented in this manner through a graph.

However, instead of describing pixel intensity values, each

node in the graph represents the classification state of the

corresponding window. This state takes on a discrete value

among a set of class labels corresponding

to the classification targets of the CNN. Thus, each node in the

graph can take on one of several discrete values, expressing

the predicted class of the window that the node represents. Fig.

7 displays the structure of such a graph.

Fig. 7. A subset of the MRF graph G formed by the CNN output space, where

each node ni represents the classification state of a corresponding window

analyzed with the network, whose outputs are implemented into this system as

the observed hidden variables O. Nodes have a 4-connectivity relationship

with each other represented by the edges eij thus forming a grid-like cyclical

graph.

It can be seen that if nodes represent classification

outcomes, there is a strong relationship between them. The

reason is that continuity throughout a map tends to be

preserved over neighboring regions due to strong local

correlation in in input images. This inflicts a Markovian

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 1

-33-

property in the graph nodes where there is a dependency

between successive nodes. Therefore, this graph follows the

same structure as an MRF, and any operations available to this

kind of structure will be likewise applicable to the output map.

B. Energy Allocation

To implement energy minimization on an MRF, it is

necessary to assign energy potentials to each node and edge.

These energies are usually adapted from observed variables,

and in this case, they correspond to the values of the output

maps and combinations thereof. Therefore, MRF optimization

over a graph can be carried out by minimizing its Markov

random energy , given by:

Here, corresponds to the singleton energy potential of

node , and is a pairwise potential between

nodes and . Starting from the CNN output map

observations, the singleton potentials can be assigned as:

Where is the total number of classes in set (2 in the

sample CNN architecture), and is the observed CNN value

for window and class . In this manner,

each value is an MSE-like metric that measures how far off

from ideal training target values did the CNN classify

window as. Thus, a lower potential value will be assigned to

the most likely class, while a higher potential value will be

given to other possible classes at this node.

Pairwise potentials can be defined as:

Where each value is a straightforward distance metric

that measures the jump in CNN output values when switching

from class to class between windows and . Thus, these

potentials will be small if the same class is assigned to both

nodes, and large otherwise. Fig. 8 shows all energy

assignments per node pair.

Fig. 8. A detail of the potential energies assigned to each of two nodes {n1 ,

n2} connected by edge e12 . The singleton potentials Θi
a correspond to the

energy associated with node i if assigned to class a, and the pairwise

potentials Θij
ab are the changes in energy that occur by assigning class a to

node ni and class b to node nj .

It is worth noting that these pairwise potentials between

neighboring windows (nodes) are the only feature that sets

apart this process from the traditional winner-takes-all

approach which would otherwise be implemented through the

minimization of the energy in the singleton potentials by

themselves.

C. Energy Minimization by Belief Propagation

Applying Belief Propagation [5] to find the lowest possible

energy state of the graph will now yield an equilibrium of class

assignments throughout the image output space.

Due to the cycles inherent of image-bound graphs, a special

variation of the algorithm must be used, in this case Loopy

Belief Propagation [5]. This variation requires the

minimization to be run several times until the solution

converges and an equilibrium is found. However, due to

various existing optimizations for this algorithm, this process

is very straightforward and can be solved in polynomial time.

V. RESULTS

The test application is developed for the Android mobile OS

as an OpenGL ES shader which makes use of the available

computing capabilities of the device GPU. The main logic of

the system is placed within a fragment shader running the

CNN per-pixel over a Surface Texture memory object. The

test device is equipped with a quad core 1.3 GHz Cortex-A9

CPU with a 12-core 520 MHz Tegra 3 GPU. This SoC

architecture embeds 1 Gb of DDR2 RAM shared by both the

CPU and GPU.

The test system executes the same CNN architecture

described in Fig. 1, except for the classification layer having

32 output neurons corresponding to one background label and

31 different logo labels. This network is exectued over 8

simultaneous images forming a multi-scale image

pyramid. The energy minimization technique as described in

Section 4 is then applied, but over a 3D graph formed with 6-

Regular Issue

-34-

connectivity between nodes such that each window is also

aware of window classifications at the corresponding larger

and smaller scale steps. Table 1 gives a summary of the results

obtained from this setup.

Fig. 9. Comparison of the final “Logo” classification and localization,

applying the classical maximum value per class extraction vs. our proposed

energy minimization inference method on the two CNN output maps

introduced in Figure 5

It is of great interest to note the final configuration.

Regardless of the fact that there is no overlap at this stride, a

3.0 speedup is still observed over running the windows

individually. This is due to the inherent reduction in memory

bandwidth through the system's pipelined execution approach,

where the entire image needs to be loaded only once per

execution. This contrasts the traditional approach where

loading separate windows into memory at different times

requires each to be individually sliced from the original

memory block -- a very expensive operation in the limited

memory throughput of mobile devices.

Server platforms have a restriction in the PCIe bus speed

between the CPU and GPU, but instead offer very fast local

memory access within the GPU. As a result, these architectures

would allow window extraction at lower relative latencies. The

SoC architecture of mobile devices do not face similar CPU to

GPU memory bottlenecks, as these chips are usually located

within the same circuit. Their lower energy requirements,

however, force local memory access to be radically slower.

Therefore, this architecture favors the parallel usage of data

blocks, a fact which the system we have presented exploits in

full. As such, we consider it to be a mobile-first oriented

algorithm, although it would offer likewise improvements in

other platforms.

The results of the inference system are more of a qualitative

nature, as it is difficult to objectively establish a ground truth

basis for such experiments. This system aims to localize

classified windows, therefore it is subject to an interpretation

of which windows cover enough of the recognition target to be

counted as a true positive. Regardless, Table 2 gives an

indicative comparison of the system against the competing

techniques previousy described. Fig. 9 shows a visual

comparison.

VI. CONCLUSIONS

A system for the optimization of convolutional neural

networks has been presented for the particular application of

mobile image recognition. The performance figures presented

in Table 1 correspond to a device architecture which, at the

time of this work, is a commonly available specification on

end user devices. It must be noted that with the rapid growth

that is being observed in mobile hardware capabilities, the

effects of these optimizations are likely to grow in their

significance. GPUs capable of new technology will extend the

reach of the parallel-wise optimizations described. Relevant

advancements in this area would include things such as

heterogeneous parallel processing via OpenCL EP and zero-

copy memory transfer between the camera and GPU through

tighter SoC integration. General availability of such

technologies will open an ever larger possibility of mobile

computer vision opportunities.

Although a simple logo classification task was used here as

a sample application, CNNs allow for many other image

TABLE I

SPEEDUP RESULTS

T0 W (L) W (P) OC T (PW) T (SM) Speedup

4×4 464 3,712 98% 29,730 1,047 28.4x

8×8 112 896 94% 7,211 387 18.6x

12×12 60 480 86% 3,798 311 12.2x

16×16 32 256 75% 2,051 240 8.5x

20×20 24 192 61% 1,536 252 6.1x

24×24 15 120 44% 945 203 4.7x

28×28 15 120 23% 949 200 4.7x

32×32 8 64 0% 514 171 3.0x

Results of tests with several input layer stride T0 configurations, from the

closest packed 4×4 to the non-overlapping 32×32 layouts. A total window

count at each pyramid level W (L), and over the full 8 level pyramid W (P), as

well as the window overlap coverage OC per input map is given for each of

the stride selections. An average over 20 test runs for each of these

configurations was taken as the execution time in milliseconds for each of the

methods described herein – the traditional per-window execution method T

(PW), and our shared map technique T (SM). A speedup factor is calculated

showing the performance improvement of our method over the other.

TABLE II

INFERENCE RESULTS

Algorithm Accuracy PPV F1

Maximum Value 0.942 0.341 0.498

Weighted Average 0.964 0.391 0.430

Neighbor Boosting 0.972 0.489 0.591

Energy Minimization 0.981 0.747 0.694

Results of various inference algorithms for the final classification,

describing the Accuracy (TP + TN / ALL), PPV (TP / TP + FP), and F1 (

2TP / 2TP + FP + FN) metrics.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 1

-35-

recognition tasks to be carried out. Most of these processes

would have great impact on end users if implemented as real

time mobile applications. Some examples where CNNs have

been successfully used and their possible mobile

implementations would be (i) text recognition for visually

interactive language translators, (ii) human action recognition

for increased user interactivity in social applications, or even

(iii) traffic sign recognition for embedded automotive

applications. Any of these applications could be similarly

optimized and discretized by the system presented here.

In addition to the CNN classifier, the MRF model is very

flexible as well and its implementation can be adjusted to

domain-specific requirements as needed by each application.

For example, a visual text recognizer might implement

pairwise energy potentials which are modeled with the

probabilistic distribution of character bigrams or n-grams over

a corpus of text, thereby increasing the overall text recognition

accuracy.

Furthermore, although the analysis of a single image has

been discussed, this system is similarly extensible to multiple

images processed together. The most common example of this

is the analysis of a multi-scale image pyramid, something vital

within mobile applications as variable distances between the

camera and its target will cause the object to be observed at

different sizes within the analyzed image. In such a case, the

MRF would be extended to a 6-connectivity 3D grid, where

nodes would be equally aware of window classifications at the

corresponding larger and smaller scale steps.

Therefore, we believe this to be a general purpose mobile

computer vision framework which can be deployed for many

different uses within the restrictions imposed by embedded

hardware, but also encouraging the limitless possibilities of

mobile applications.

REFERENCES

[1] Borrajo, M.L., Baruque, B., Corchado, E., Bajo, J., Corchado, J.M.:

Hybrid neural intelligent system to predict business failure in small-to-

medium-size enterprises. International Journal of Neural Systems

21(04), 277–296 (2011)

[2] Boykov, Y., Veksler, O.: Graph Cuts in Vision and Graphics: Theories

and Applications. In: Paragios, N., Chen, Y., Faugeras, O. (eds.)

Handbook of Mathematical Models in Computer Vision, pp. 79–96.

Springer US (2006)

[3] Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber,

J.: Flexible, High Performance Convolutional Neural Networks for

Image Classication. In: Proceedings of the Twenty-Second International

Joint Conference on Artificial Intelligence. pp. 1237–1242 (2011)

[4] Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.:

Convolutional Neural Network Committees For Handwritten Character

Classification. In: 11th International Conference on Document Analysis

and Recognition. ICDAR (2011)

[5] Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Belief Propagation for

Early Vision. International Journal of Computer Vision 70(1), 41–54

(May 2006)

[6] Komodakis, N., Tziritas, G.: Image completion using efficient belief

propagation via priority scheduling and dynamic pruning. Image

Processing, IEEE Transactions on 16(11), 2649–2661 (Nov 2007)

[7] Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification

with Deep Convolutional Neural Networks. pp. 1106–1114. No. 25

(2012)

[8] Wang, C., Paragios, N.: Markov Random Fields in Vision Perception: A

Survey. Rapport de recherche RR-7945, INRIA (September 2012)

William Raveane is a Ph.D. candidate in Computer Engineering at the

University of Salamanca, Spain, currently researching mobile image

recognition through deep neural networks. He has also worked for several

years in private companies in various topics ranging from computer vision to

visual effects.

María Angélica González Arrieta is a professor at the Department of

Computer Engineering and Automation at the University of Salamanca,

Spain. Her research interests are primarily in pattern recognition and neural

networks. She is also a member of the BISITE research group.

