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Abstract — Recommender systems require input information in 

order to properly operate and deliver content or behaviour 

suggestions to end users. eLearning scenarios are no exception. 

Users are current students and recommendations can be built 

upon paths (both formal and informal), relationships, behaviours, 

friends, followers, actions, grades, tutor interaction, etc. A 

recommender system must somehow retrieve, categorize and 

work with all these details. There are several ways to do so: from 

raw and inelegant database access to more curated web APIs or 

even via HTML scrapping. New server-centric user-action 

logging and monitoring standard technologies have been 

presented in past years by several groups, organizations and 

standard bodies. The Experience API (xAPI), detailed in this 

article, is one of these. In the first part of this paper we analyse 

current learner-monitoring techniques as an initialization phase 

for eLearning recommender systems. We next review 

standardization efforts in this area; finally, we focus on xAPI and 

the potential interaction with the LIME model, which will be also 

summarized below. 

 

Keywords — LIME model, eLearning, Conceptual Educational 

Model, Rule-based recommender system, Informal learning, 

Social interaction, Learning Tool Interoperability, User 

monitoring 

 

I.  INTRODUCTION: REVIEW OF RECOMMENDER ENGINES, 

ELEARNING AND NEED FOR USER INPUT DATA  

ECOMMENDER engines deliver suggestions based on 

collected information on preferences, general user 

behaviour and even items bought or content searched. Trendy 

online stores and services massively apply this approach ([  

HYPERLINK \l "1167344"  1 ]). The information can be 

obtained explicitly (by processing users’ manual tiering) or 

implicitly, typically by monitoring users’ behaviour, such as 

songs downloaded, applications launched, chat transcriptions, 

web sites visited, PDFs read, or ebooks transmitted to ePub 

readers (2]). 

Recommenders can also make use of demographic info and 

social information (e.g., followers, e-friends, posts, replies, 

chat rooms, and others), as well as geographical location data 

or even health signals (e.g., pedometers, blood pressure).  

 Collaborative filters ([  HYPERLINK \l "marlinmodeling"  

3 ]) are very often used by recommender systems along with 

content-, knowledge- and social-based filters. Implementation 

of these filters has grown as access to the Internet has become 

more widespread in recent years. They can be used for any 

type of reachable media (e.g., movies, music, television, and 

books) and in many different scenarios, such as eLearning, e-

commerce, mobile applications, search, dating, etc. These 

filters need to access as much of a user’s navigation and 

behaviour history as possible in order to offer fine-tuned 

purchase options or action tips.  

Memory-based methods use similarities and ratings from all 

users who have manually expressed their preferences/level of 

satisfaction on a given object/issue. These similarities 

represent the distance between two users and their tiered 

records. Model-based methods establish first the sets of similar 

users by using Bayesian classifiers, neural networks and fuzzy 

systems. Generally, commercial recommender engines use 

memory-based methods. On the other hand, model-based 

methods are usually associated with research environments, 

including eLearning. Hybrid techniques can also be applied 

and have been demonstrated to be of much importance to 

assist and guide users through systems. Hybrid recommenders 

merge different types of techniques in order to get the most out 

of each of them. Finally, we have rule-based recommenders, 

like LIME, which will be analysed below. In rule-based 

systems, a set of conditional filters are manually defined and 

triggered when necessary in order to deliver the appropriate 

recommendation to the user/learner. 

The increase in the attention paid by the research 

community to recommender systems is striking, as has already 

been pointed out in 4]. Figure 1 shows, on the Y-axis, the 

number of cited papers from each year as of 2013. The size of 

each bubble corresponds to the number of proceeding articles 

for that given year. It can be noted that there is a peak of 

interest around 2009. 
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Fig. 1. # of papers and workshops related to subject recommendation 

 

With the development of sophisticated eLearning 

environments and Learning Management Systems (LMS) ([  

HYPERLINK \l "abedour"  5 ]), personalization is also 

becoming an important feature.  Personalized learning occurs 

when eLearning platforms are designed according to 

educational experiences that fit the needs, goals, and interests 

of each individual learner. Personalization can be achieved 

using different recommendation techniques, very similar to 

those just summarized. Ideally, recommender systems in 

eLearning environments should assist students in finding 

relevant learning actions and materials that perfectly match 

their profile and the best way towards self-education. The right 

time, the right context, and the right way are also critical. 

Recommenders should also keep learners motivated and 

enable them to complete their academic activities in an 

effective and efficient way. Personalization should take place, 

not only on enrolment-limited online campuses or Small 

Private Online Courses (site courses, college classes, student 

groups, etc.), but also on the now trendy MOOCs: Massive 

Open Online Courses environments (6], [  HYPERLINK \l 

"mooeurope"  7 ]), where enrolment rate can be up to a few 

thousand students. In other words, a recommender system 

should have the ability to efficiently scale up or down 

independently of the number of students and without losing 

sight of the goal of improving individualized education. 

Recommender systems (especially in eLearning) can also 

suffer from the cold-start problem. Cold start occurs when 

there is an initial lack of input data (ratings, logged actions 

from users, etc.) to trigger or initialize the appropriate 

algorithm. We can distinguish two main kinds of cold-start 

variants: new item and new user ([4]). The new-item problem 

arises because new items entered do not have initial 

ratings/inputs from users. Also, a priori, new users in a system 

might not yet have provided any input info, and therefore 

cannot receive any personalized recommendations. 

Independently of the algorithm used, the identifiable 

potential issues (like cold start) and the scenario of 

application, recommender systems require input data in order 

to behave properly (8]). This data can be manually entered ([  

HYPERLINK \l "Bobadilla20111310"  9 ]) by the user 

(ratings, explicit opinions, etc.) or implicitly obtained by 

monitoring software. In an eLearning environment, the latter 

approach is more likely to be the chosen one. 

We now list the most common techniques used for 

monitoring learners’ actions in an LMS. The next sections will 

present the Experience API and other standardization efforts 

as new and modern ways of logging learner actions, chosen 

materials, student paths, etc., and serving them to 

recommender systems. Finally, we introduce the rule-based 

LIME model and discuss how can it be fed from an Experience 

API Learning Record Store repository (which we will also 

discuss) in order to properly operate and deliver rule-based 

recommendations to students. 

II.  BASIC SYSTEM-DEPENDENT MONITORING TECHNIQUES 

There exist three main different non-standard ways of 

interacting with Learning Management Systems (and 

electronic systems in general) and extracting user/learner data 

(also summarized in Figure 2): 

A. Web Services 

The first and most immediate way to obtain learner input 

data is through LMS-dependent web services and API calls. 

Modern LMS (10]) do usually offer simple, elegant, industry-

standard and compelling ways (WSDL, SOAP, RPC and 

REST) of accessing their internal information and retrieving 

needed data. This approach has one main drawback: not every 

service needed is implemented and/or enabled by default. This 

could be easily tackled if we are granted access to the LMS 

infrastructure in order to add these missing sockets or activate 

existing disabled-by-default ones. However, this is not always 

possible in many scenarios (e.g., proprietary cloud-based 

campus environments). Another clear disadvantage is that 

developed web services are very unlikely to be compatible 

between two distinct LMS, making it necessary to re-code 

each of them for every platform and software version.  

B. Scrapping 

Web scrapping consists of, on the one hand, running 

automated HTTP(S) requests that retrieve the same pages and 

HTML documents as a user would fetch by operating a web 

browser manually ([  HYPERLINK \l "6112910"  11 ]). On 

the other hand, after such requests have succeeded, data can be 

distilled, examined and applied to some sort of 

scripting/analytics. Most HTTP command line (CLI) client 

programs/libraries allow authentication and form submission, 

which is usually enough for most purposes. Although web 

scrapping seems the most compatible form of mechanized 

data-mining, we still face a minor problem: some LMS make 

huge use of Javascript for accessing resources and building 

routes to them. In this scenario, CLI web clients are not 

enough and should be superseded by what are known as 

headless web browsers, explained in previous studies (12],  [  

HYPERLINK \l "Grigalis:jucs_20_2:unsupervised_structu"  

13 ]). Such browsers are scriptable, run without any user 

interface, and best of all understand and can execute Javascript 

code without user intervention. 
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The result of a scrapping operation is usually an HTML file 

or a set of files of this kind, which should be processed 

afterwards (14]) in order to extract the desired monitoring 

information. As HTML is a descendant of XML, any XML 

parsing technique (XPath, XQuery, XSLT, etc.) and 

technology applies here, e.g., Nokogiri ([  HYPERLINK \l 

"Hun13"  15 ]). 

C. Raw database access 

This is by far the most-often-seen method in the literature, 

which implies direct access to the system database. This 

approach has several advantages and disadvantages. The main 

advantage is speed, since no intermediaries, software layers or 

no other different APIs play a role in data retrieval (apart from 

the SQL engine and the APIs themselves). The most 

significant downside is possible database scheme migrations 

and incompatibilities as new versions of the server software 

are deployed. 

 
Fig. 2. Basic web monitoring techniques 

  

These three techniques spring into action at some point or 

another of the student data-mining process, in different ways 

and with different goals. Some monitoring models, as seen in 

16] and [  HYPERLINK \l "Mazza04gismo:a"  17 ], make use 

of reports and logs derived from data contained in server 

temporary files. Other research efforts, such as the one 

presented in 18], have used closed-systems and setups, with 

their own specific monitoring methods and engines.  The study 

presented in [  HYPERLINK \l "5561329"  19 ] makes use of 

quiz results as input for a research recommender model. The 

authors of 20] and [  HYPERLINK \l "6033004"  21 ] feed 

their recommenders with web-browsing behaviour. In22], the 

authors gain direct access to a Moodle instance database in 

order to boot their Predictive a priori algorithm. The model in 

[  HYPERLINK \l "ElB10"  23 ] initially presents students 

with a test to identify his/her personality in Myers-Briggs 

dimensions. The authors in 24] suggest obtaining input data 

not only from the server and client sides, but also from proxy 

servers. In [  HYPERLINK \l "Kardan:2012aa"  25 ], content 

recommendation needs each student to self-monitor 

him/herself: learners estimate different indexes themselves and 

compare them with actual values, which are retrieved by the 

system. The model presented in 26] uses the AprioriAll 

algorithm to immediately build sequences from server logs, 

which are used in conjunction with tags in order to deliver 

recommendations. The model in [  HYPERLINK \l 

"conf/wec/WangH05"  27 ] also makes use of the AprioriAll 

algorithm using only web logs. In 28], again, only web-

browsing activities of learners are monitored, but these are 

then subdivided into web content mining, web structure 

mining and web usage mining realms. 

We also find learning research software prototypes, like the 

PSLC Datashop initiative from the Pittsburgh Science of 

Learning Center [  HYPERLINK \l 

"Stamper:2011:MED:2026506.2026609"  29 ], which has 

defined its own XML DTD schema as a logging scaffold for 

their Tutor learning research platform. Some approaches rather 

build a dedicated tool or patch applied to a LMS, as in 30] 

with the MOCLog project for Moodle. 

The Experience API and other standardization proposals for 

the monitoring phase, presented below, advocate a completely 

new and cohesive approach to this critical phase in the 

recommendation/learning analytics workflow. 

II.  STANDARD SPECIFICATIONS FOR MONITORING 

The aforementioned non-standardized approaches to 

user/learner monitoring can be applied on fully controlled 

scenarios and research projects. However, they turn out to be 

unsatisfactory in real academic environments managed by 

third-party institutions. 

There exist a few proposals that aim at standardizing the 

monitoring and logging of user actions. Almost all are based 

on the Resource Description Framework, or RDF [  

HYPERLINK \l "Pan09"  31 ]. The idea behind RDF is 

something called the triple. A triple can really be condensed to 

a plain sentence structure:  

 subject 

 phrase that characterizes a relationship 

 object. 

 

Example:    Daniel   –    is the author of    –     this paper. 

Triples are extremely useful and simple, and provide a 

grammar for the so-called semantic web.  

Also, some of these specifications include some sort of 

software and database back-end service, linked APIs and query 

language that allow learning platforms to send and store 

monitoring data and third-party learning analytics software to 

query and retrieve analysable data. We summarize here the 

most important and paradigmatic monitoring specs:  

The Caliper framework/Sensor API was proposed by the 

IMS Global Consortium and follows the triple metaphor. It is 

built around the following concepts (32]):  Learning Metric 

Profiles that provide an activity-centric focus to standardize 

actions and related context; Learning Sensor API and 

Learning Events, which drive tools and an associated analytics 

service solution; and finally, Learning Tool Interoperability 

(LTI), which enhances and integrates standardized learning 

measurements with tool interoperability. 

 IEEE 1484.11.1/IEEE 1484.11.2 ([  HYPERLINK \l 

"IEE05"  33 ]) provides a complex data model structure for 

tracking information on student interactions with learning 

content. Additionally, an API allows digital educational 
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content coming from the LMS and third-party services to 

query and share collected information. 

JSON Activity Streams (34]) is the name of the 

specification published by IBM, Google, MySpace, Facebook, 

VMware and Microsoft. Its goal is to provide sufficient 

metadata about an activity such that a consumer of the data can 

present them to a user in a rich human-friendly format. It does 

not provide a logging service, just the specification of the 

message format. 

Finally, we also have the Experience API, which will be 

addressed in the next section. 

Security and privacy models can also be applied in all specs 

cited above. Network communications can be encrypted and 

the subject can be anything but the learner’s real name. 

Learning analytics researchers and logging storage 

implementers are responsible for the ethical usage of the 

compiled info coming from student monitoring. As with any 

other area related to digital mining, trust, accountability and 

transparency must always prevail ([  HYPERLINK \l "Par14"  

35 ]). 

III.  THE EXPERIENCE API SPECIFICATION 

The Experience API (or xAPI for short) is an eLearning 

monitoring specification developed by Rustici Software and 

the Advanced Distributed Learning Initiative (ADL), and is 

aimed at defining a data model for logging data about 

students’ learning paths (36]). It also furnishes an API for 

sharing these data between remote systems, as we will see 

later. The Experience API allows, among other things, the 

tracking of games and simulations, real-world behaviour, 

learning paths and academic achievements. xAPI defines 

independent mechanisms, protocols, specifications, 

agreements and software tools for monitoring any imaginable 

scenario (Figure 3): from online campuses and student 

behaviour to workforce control ([  HYPERLINK \l "6530268"  

37 ]). 

 

 
Fig. 3. Examples of usage of the Experience API 

 

xAPI also uses JSON to transfer states/sentences to a central 

web service. This web service allows clients to read and write 

data in the form of sentence objects that share the foundations 

of the aforementioned triple scheme. In their simplest 

conception, sentences are in the form of actor, verb and 

object/activity, like the examples in Figure 4. A JSON xAPI 

message could resemble the following: 

 
{“id”: “3f2ef28f-ef1a-4a1f-9f5e”, 

 “actor”: { 

  “name”: “Peter”, 

  “mbox”: “mailto:some@new.user”, 

  “objectType”: “Agent” 

 }, 

 “verb”: { 

  “id”: “http://.../verbs/solved”, 

  “display”: { 

   “und”: “solved” 

  } 

 }, 

 “context”: { 

  “contextActivities”: { 

   “parent”: [ 

    { 

     “id”: “http://../objects/problems”, 

     “objectType”: “Activity” 

    } 

   ] 

  } 

 }} 

 

More complex statement forms can be used and we will 

elaborate more on them in the next section. The set of verbs 

and objects an institution can work with is called vocabulary. 

Each institution can define its own vocabulary with no 

restriction as long as an URL links back each verb and object 

to a JSON stream describing it. 

 

 
 

Fig. 4. Some examples of xAPI sentences 

 

The Experience API was released, as version 1.0, in April 

2013, and there are, as of today, over 100 adopters, projects 

and companies involved, such as those in Figure 5. 

 

 
 

Fig. 5. Some adopters of the Experience API specification 

 

The specification also contemplates a query API to help find 

logged statements, and performs some analytics (averages, 

aggregation, etc.) on the data. Finally, the Experience API is 

an open-source and free initiative, whose source code and 

specifications are open to anyone. 
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IV.  EXPERIENCE API LRS AS AN ELEARNING MONITORING 

ENGINE 

The core of the Experience API is the Learning Record 

Store (LRS). The LRS is a specific module for data storage 

that allows an LMS (or any other social platform) to report 

tracking information on the learning experience. At any time, 

an LMS can send collected data over the network to an 

Experience API web service. An LRS is nothing more and 

nothing less than a wrapper or API software layer to a SQL 

database (initially, a PostgresSQL instance in the original 

Rustici implementation), as can be appreciated from Figure 6. 

This free LRS implementation was open-sourced by ADL 

(available at its Github repository) and is based on the Python 

computer language and on the publicly acclaimed Django web 

framework. 
 

  

 

Fig. 6. Usual LRS software stack and interaction 

 

The learner (actor), verb and object/activity elements 

explained above are mandatory when talking to the LRS. 

However, they can be complemented with result and a context 

extra fields with additional information. 

Students who interact with educational content via different 

systems or tools will leave traces in the LRS; each of these 

tools, if appropriately designed, will provide a totally different 

actor/user ID to preserve anonymity. 

The verb element is a key part of an LRS communication, 

because it describes the action performed by the student. A 

URL must also be attached to the verb JSON property, 

pointing to its definition. This definition is composed of a 

name, a description, and a brief text suggesting plausible uses. 

In an eLearning environment, a verb is usually employed in its 

past tense form and could be something like: “read”, “tried”, 

“failed”, “passed”, “experienced”, etc. 

The object/activity part of the statement refers to “what” 

was experienced in the action defined in the verb, and usually 

corresponds to the learning activity (webinar, wiki, chat room, 

forum, mail message, etc.). Objects/activities must also 

embody a URL pointing to their rationale, which can include 

other information such as a description of the learning activity, 

verbs that can apply, possible results and usage suggestions. 

The result component provides the denouement to the 

statement. It includes score, level of success and completion 

fields. 

The context part adds more details to the overall statement, 

like the relationship of the activity with other activities, its 

order in the learning stream, or the teacher’s name. 

To every element in a sentence (actor, verb, context, etc.) 

sent to the LRS can be added, if needed, any type of pair 

key/value with extra information. It is even possible to add 

localization information so that an element can be perfectly 

identified in all possible languages. 

As introduced in Figure 6, an LRS must also implement 

REST calls for data transfer (PUT, POST, GET and 

DELETE). The Experience API can make use of either OAuth 

or HTTP Basic Authentication when communicating with the 

outside world, ensuring a certified and secured dialogue 

between clients (usually an LMS) and the LRS service. 

One of the key aspects of the LRS architecture is that it can 

be implemented in shared cloud ecosystems, allowing 

communications from very different eLearning platforms and 

academic institutions. In other words, monitoring data can be 

uniformly stored, allowing rapid, vast and democratic access 

to learning analytics information. Also, as LRS servers can 

integrate data from many different sources and from the same 

user/learner in a harmonized way, recommender systems can 

reduce the effects of possible cold-start scenarios. 

Some companies are beginning to offer corporate cloud 

LRS services at different price tiers: Rustici Software, Saltbox, 

Learning Locker, Biscue, Clear, Grassblade, among others. 

Some also include compelling online analytics tools.  

There exist some free LRS hosting services but mainly for 

testing and technology promotion purposes, and not applicable 

for research or production environments. It is worth 

mentioning the service run by ADL (lrs.adlnet.gov/xAPI) and 

the one deployed by Rustici Software (demo.tincanapi.com). 

V.  THE LIME MODEL AND THE LRS  

Now that we have reviewed the most prominent monitoring 

techniques and introduced a few recent efforts towards 

regulation, we should ask how a real recommender engine 

could work with and benefit from a specific RDF-based 

source. The Experience API and the LIME model, explained 

below, are chosen.   

The LIME model, presented in 38], is a tutor-lecturer-

crafted rule-based recommender grounded on four separate 

pedagogical components strongly evident in all stages of 

education (Figure 7): 

 Learning, or what every learner needs to do in order to 

assimilate and build knowledge on his or her own. 

 Interaction, or relationships established, activities and 

academic interaction between students, leading to the 

acquisition of knowledge and competencies. 

 Mentoring, or what teachers/tutors give relevance to. 

 Evaluation, or officially graded activities, in every single 

category above listed. 

Lecturers-tutors must design a strategy for each of his/her 

courses. The model codifies this strategy for a course or class 

group by using settings and categories. 

A course setting is the balance between formal and informal 



International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 7 

 

-49- 

 

scenarios. In this context, formal means a regular academic 

programme with regular evaluation means (e.g. graded exams); 

informal means continuous evaluation and user activity inside 

the Learning Management System and every tool linked to it 

(e.g. Social Networks or repository). The system collects 

specific inputs from both settings, keeping an overall balance 

of 100%. For instance, if the designer requires just a formal 

setting, the balance should be Informal: 100% - Formal: 0%. 

Furthermore, a learning scenario must be defined as the 

balance between the Learning, Interaction, Mentoring, and 

Evaluation, in combination with the Formal and Informal 

settings categories. In the LIME model, every category and 

setting are assigned with a specific weight (wi), keeping an 

overall balance of 100%. 
 

 
 

Fig. 7. Categories and settings in the LIME model 

 

In the LIME model each input (action performed by a 

student in the eLearning platform or Social Network) is 

attributed a category and a weight, assigned by the 

teacher/tutor.  

An example of model configuration for a specific site can be 

found in Figure 8. Based on these components, tutors can 

manually define and parameterize recommendation rules, 

which will only trigger a message to the student if conditions 

regarding categories, inputs and settings are met. 

 

 
 

Fig. 8. Sample configuration of the LIME model for a specific course site 

 

LIME is therefore a tutor-lecturer-crafted, rule-based 

recommender system for cloud-institutional learning 

environments (SPOCs or MOOCs), which contrasts with other 

recommendation paradigms reviewed in previous sections. 

LIME’s goal is simply to improve learning efficiency, and to 

facilitate the learning itinerary of every student by a 

personalised recommendation set. 

LIME can be fed from learner inputs in a variety of ways. 

However, our model can also be initialized with tracked data 

stored in a xAPI LRS instance/server if we make some 

assumptions. 

How can LIME inputs be built out of information stored in 

the LRS? A LIME model input has to define an action and a 

context in which a learner performs this action: 

 participation in chat 

 answer in main forum thread 

 message to tutor 

 resolution of problem set 

 formal broadcast mail to mates 

 ratio of emoticons used in communications 

 ... 

  xAPI verbs and objects, taken in an isolated way, are not 

sufficient. However, a joint entity composed of a verb plus an 

xAPI object makes more sense in our model, as shown in 

Figure 9: 

 
Fig. 9. LIME Inputs from xAPI sentences 

 

As stated above, verbs and objects in the xAPI specification 

must be backed by JSON composites with information about 

meaning and usage tips. It is up to the implementer to define 

which verbs and objects best represent the scenario to be 

tracked and monitored. Let us take a look at the sample verbs 

and activities available on the official Experience API site 

(adlnet.gov/expapi). In Figure 10 are listed all the verbs and 

activities the LRS can store and their possible combinations to 

build a meaningful and compatible LIME input.   

 

 
 

Fig. 10 From xAPI verbs and objects to LIME inputs 

 

As explained in previous paragraphs and as part of the 

model configuration, each input should be assigned a weight 

(wi), a category and a setting. These parameters should not 

reside on the LRS but on the LIME system’s own 

configuration repository. In other words, LIME administrators 

should maintain an updated equivalency list between LRS 

vocabulary and LIME inputs. These inputs will then interplay 

with rules (Figure 11), which are, in turn, based on predicate 

http://adlnet.gov/expapi
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filtering. Predicates are applied over collections of inputs and 

highly resemble W3C XQuery or ECMA LINQ, detailed in [  

HYPERLINK \l "Saigaonkar:2010:XFS:1858378.1858429"  

39 ],40] and [  HYPERLINK \l 

"Pardede:jucs_15_10:sqlxml_hierarchical_"  41 ]. 

 

filtering

Inputs list Rule

Inputs matching filter

 
 

Fig. 11: Predicate filtering in LIME 

 

As LIME was developed as a Basic Learning Tool 

Interoperability (Basic LTI) application, this equivalency list 

can even be stored in the LMS database through the LTI 

Settings API specification, part of LTI 1.0 and above. The 

model thus remains free from external configuration files or 

own database management. In order to save this list, it is only 

necessary to send a POST HTTP request like the one in the 

following example: 

 
POST http://server/imsblis/service/    

id=832823923899238  

lti_message_type=basic-lti-savesetting  

lti_version=LTI-1p0 

setting=“participated+chat=message in chat 

room; experienced+lesson=read text”  

oauth_callback=about:blank  

oauth_consumer_key=1213415  

oauth_nonce=14c6211cc66d87644f0855511 

oauth_signature=IkllkkZ1qfShYBYE+BhC 

oauth_signature_method=HMAC-SHA1  

oauth_timestamp=1338872426  

oauth_version=1.0  

 

It is important to notice that LMS must be LTI compatible 

and support the Settings API protocol. 

VI.  LRS DATA AGGREGATION AND LIME RULES 

Once LRS sentences are stored and an agreement between 

LIME inputs and these has been established, we have all the 

necessary ingredients to trigger recommender rules and deliver 

recommendations to students, if applicable. However, rules in 

LIME cannot operate upon atomic and individual LRS 

records, but only upon averages and aggregated substantial 

data, which offer a more equalized view of the learner 

situation. An example of this aggregation procedure is 

presented in Figure 12: 
 

 
 

Figure 12: Aggregation of LRS sentences 

 

Mathematically: 

 
 

These aggregation operations are covered by the xAPI 

standard as well. The Experience API provides a query 

language to easily data-mine an LRS. For instance, the 

following code collects all the times the user “John” has tried 

an exam, and returns an aggregated result: 

 
stmts.where( 

    'actor.name = “John” and ('+ 

        'verb.id = 

“http://adlnet.gov/expapi/verbs/passed”'+ 

        ' or '+ 

        'verb.id = 

“http://adlnet.gov/expapi/verbs/failed”'+ 

    ')') 

 

The default (and so far only) implementation of this query 

language is the ADL.Collection API, written in Javascript and 

ready to be used in browsers or on the server-side with 

NodeJS. There are two versions of this API: CollectionSync 

and CollectionAsync. They are almost the same, but the Async 

version runs the queries in a separate worker thread. The 

downside of this is that the statements must be serialized and 

passed into the worker, which can be slow. On the other hand, 

the user interface is more responsive.  

VII. CONCLUSION 

This paper describes incipient technologies and steps taken 

towards the dissemination of standardized monitoring engines. 

The engine mainly underlined in this paper is the Experience 

API, or xAPI for short.  xAPI has been designed to store user 

data in a simple, centric, standard, client agnostic and powerful 

way. We also discuss the suitability of recommender systems 

in general and of the LIME recommender model in particular. 

LIME is a rule-based recommendation model. Rules in LIME 

require inputs (e.g. learner data and actions taken) that can be 

obtained in a variety of ways, like user tracking and 

interaction, user performance, or user profile. 

We also perform a survey of the most common monitoring 

techniques and how they have been implemented in previous 

research projects related to recommender systems and learning 

analytics in general. With this review we illustrate there is no 

agreed way on how to register learner events. All mentioned 
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techniques incorporate a certain percentage of dependency on 

the system software being monitored. 

Finally, we present the required adaptations and 

modifications that xAPI sentences need in order to build 

LIME-compatible inputs and how those can be aggregated and 

mined in order to feed system rules. On rule execution, our 

model delivers suggestions to students and learners. The xAPI 

spec atomizes learner actions in verbs and objects, which must 

be syntactically combined in order to obtain the 

aforementioned inputs. These combinations must be designed 

and listed by the tutor/teacher and handed over to our model. 

We suggest this equivalency list resides in the LMS’s own 

database space, thanks to the LTI Settings API. The 

Experience API also offers native aggregation-statistical tools, 

which turn out to be of great help in this process. 
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