
Special Issue on Multisensor User Tracking and Analytics to Improve Education and other Application Fields

-44-

Abstract — Recommender systems require input information in

order to properly operate and deliver content or behaviour

suggestions to end users. eLearning scenarios are no exception.

Users are current students and recommendations can be built

upon paths (both formal and informal), relationships, behaviours,

friends, followers, actions, grades, tutor interaction, etc. A

recommender system must somehow retrieve, categorize and

work with all these details. There are several ways to do so: from

raw and inelegant database access to more curated web APIs or

even via HTML scrapping. New server-centric user-action

logging and monitoring standard technologies have been

presented in past years by several groups, organizations and

standard bodies. The Experience API (xAPI), detailed in this

article, is one of these. In the first part of this paper we analyse

current learner-monitoring techniques as an initialization phase

for eLearning recommender systems. We next review

standardization efforts in this area; finally, we focus on xAPI and

the potential interaction with the LIME model, which will be also

summarized below.

Keywords — LIME model, eLearning, Conceptual Educational

Model, Rule-based recommender system, Informal learning,

Social interaction, Learning Tool Interoperability, User

monitoring

I. INTRODUCTION: REVIEW OF RECOMMENDER ENGINES,

ELEARNING AND NEED FOR USER INPUT DATA

ECOMMENDER engines deliver suggestions based on

collected information on preferences, general user

behaviour and even items bought or content searched. Trendy

online stores and services massively apply this approach ([

HYPERLINK \l "1167344" 1]). The information can be

obtained explicitly (by processing users’ manual tiering) or

implicitly, typically by monitoring users’ behaviour, such as

songs downloaded, applications launched, chat transcriptions,

web sites visited, PDFs read, or ebooks transmitted to ePub

readers (2]).

Recommenders can also make use of demographic info and

social information (e.g., followers, e-friends, posts, replies,

chat rooms, and others), as well as geographical location data

or even health signals (e.g., pedometers, blood pressure).

 Collaborative filters ([HYPERLINK \l "marlinmodeling"

3]) are very often used by recommender systems along with

content-, knowledge- and social-based filters. Implementation

of these filters has grown as access to the Internet has become

more widespread in recent years. They can be used for any

type of reachable media (e.g., movies, music, television, and

books) and in many different scenarios, such as eLearning, e-

commerce, mobile applications, search, dating, etc. These

filters need to access as much of a user’s navigation and

behaviour history as possible in order to offer fine-tuned

purchase options or action tips.

Memory-based methods use similarities and ratings from all

users who have manually expressed their preferences/level of

satisfaction on a given object/issue. These similarities

represent the distance between two users and their tiered

records. Model-based methods establish first the sets of similar

users by using Bayesian classifiers, neural networks and fuzzy

systems. Generally, commercial recommender engines use

memory-based methods. On the other hand, model-based

methods are usually associated with research environments,

including eLearning. Hybrid techniques can also be applied

and have been demonstrated to be of much importance to

assist and guide users through systems. Hybrid recommenders

merge different types of techniques in order to get the most out

of each of them. Finally, we have rule-based recommenders,

like LIME, which will be analysed below. In rule-based

systems, a set of conditional filters are manually defined and

triggered when necessary in order to deliver the appropriate

recommendation to the user/learner.

The increase in the attention paid by the research

community to recommender systems is striking, as has already

been pointed out in 4]. Figure 1 shows, on the Y-axis, the

number of cited papers from each year as of 2013. The size of

each bubble corresponds to the number of proceeding articles

for that given year. It can be noted that there is a peak of

interest around 2009.

Review of current student-monitoring

techniques used in elearning-focused

recommender systems and learning analytics.

The Experience API & LIME model case

study

Alberto Corbi, Daniel Burgos

 UNIR Research,Universidad Internacional de La Rioja - UNIR

R

DOI: 10.9781/ijimai.2014.276

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 7

-45-

Fig. 1. # of papers and workshops related to subject recommendation

With the development of sophisticated eLearning

environments and Learning Management Systems (LMS) ([

HYPERLINK \l "abedour" 5]), personalization is also

becoming an important feature. Personalized learning occurs

when eLearning platforms are designed according to

educational experiences that fit the needs, goals, and interests

of each individual learner. Personalization can be achieved

using different recommendation techniques, very similar to

those just summarized. Ideally, recommender systems in

eLearning environments should assist students in finding

relevant learning actions and materials that perfectly match

their profile and the best way towards self-education. The right

time, the right context, and the right way are also critical.

Recommenders should also keep learners motivated and

enable them to complete their academic activities in an

effective and efficient way. Personalization should take place,

not only on enrolment-limited online campuses or Small

Private Online Courses (site courses, college classes, student

groups, etc.), but also on the now trendy MOOCs: Massive

Open Online Courses environments (6], [HYPERLINK \l

"mooeurope" 7]), where enrolment rate can be up to a few

thousand students. In other words, a recommender system

should have the ability to efficiently scale up or down

independently of the number of students and without losing

sight of the goal of improving individualized education.

Recommender systems (especially in eLearning) can also

suffer from the cold-start problem. Cold start occurs when

there is an initial lack of input data (ratings, logged actions

from users, etc.) to trigger or initialize the appropriate

algorithm. We can distinguish two main kinds of cold-start

variants: new item and new user ([4]). The new-item problem

arises because new items entered do not have initial

ratings/inputs from users. Also, a priori, new users in a system

might not yet have provided any input info, and therefore

cannot receive any personalized recommendations.

Independently of the algorithm used, the identifiable

potential issues (like cold start) and the scenario of

application, recommender systems require input data in order

to behave properly (8]). This data can be manually entered ([

HYPERLINK \l "Bobadilla20111310" 9]) by the user

(ratings, explicit opinions, etc.) or implicitly obtained by

monitoring software. In an eLearning environment, the latter

approach is more likely to be the chosen one.

We now list the most common techniques used for

monitoring learners’ actions in an LMS. The next sections will

present the Experience API and other standardization efforts

as new and modern ways of logging learner actions, chosen

materials, student paths, etc., and serving them to

recommender systems. Finally, we introduce the rule-based

LIME model and discuss how can it be fed from an Experience

API Learning Record Store repository (which we will also

discuss) in order to properly operate and deliver rule-based

recommendations to students.

II. BASIC SYSTEM-DEPENDENT MONITORING TECHNIQUES

There exist three main different non-standard ways of

interacting with Learning Management Systems (and

electronic systems in general) and extracting user/learner data

(also summarized in Figure 2):

A. Web Services

The first and most immediate way to obtain learner input

data is through LMS-dependent web services and API calls.

Modern LMS (10]) do usually offer simple, elegant, industry-

standard and compelling ways (WSDL, SOAP, RPC and

REST) of accessing their internal information and retrieving

needed data. This approach has one main drawback: not every

service needed is implemented and/or enabled by default. This

could be easily tackled if we are granted access to the LMS

infrastructure in order to add these missing sockets or activate

existing disabled-by-default ones. However, this is not always

possible in many scenarios (e.g., proprietary cloud-based

campus environments). Another clear disadvantage is that

developed web services are very unlikely to be compatible

between two distinct LMS, making it necessary to re-code

each of them for every platform and software version.

B. Scrapping

Web scrapping consists of, on the one hand, running

automated HTTP(S) requests that retrieve the same pages and

HTML documents as a user would fetch by operating a web

browser manually ([HYPERLINK \l "6112910" 11]). On

the other hand, after such requests have succeeded, data can be

distilled, examined and applied to some sort of

scripting/analytics. Most HTTP command line (CLI) client

programs/libraries allow authentication and form submission,

which is usually enough for most purposes. Although web

scrapping seems the most compatible form of mechanized

data-mining, we still face a minor problem: some LMS make

huge use of Javascript for accessing resources and building

routes to them. In this scenario, CLI web clients are not

enough and should be superseded by what are known as

headless web browsers, explained in previous studies (12], [

HYPERLINK \l "Grigalis:jucs_20_2:unsupervised_structu"

13]). Such browsers are scriptable, run without any user

interface, and best of all understand and can execute Javascript

code without user intervention.

Special Issue on Multisensor User Tracking and Analytics to Improve Education and other Application Fields

-46-

The result of a scrapping operation is usually an HTML file

or a set of files of this kind, which should be processed

afterwards (14]) in order to extract the desired monitoring

information. As HTML is a descendant of XML, any XML

parsing technique (XPath, XQuery, XSLT, etc.) and

technology applies here, e.g., Nokogiri ([HYPERLINK \l

"Hun13" 15]).

C. Raw database access

This is by far the most-often-seen method in the literature,

which implies direct access to the system database. This

approach has several advantages and disadvantages. The main

advantage is speed, since no intermediaries, software layers or

no other different APIs play a role in data retrieval (apart from

the SQL engine and the APIs themselves). The most

significant downside is possible database scheme migrations

and incompatibilities as new versions of the server software

are deployed.

Fig. 2. Basic web monitoring techniques

These three techniques spring into action at some point or

another of the student data-mining process, in different ways

and with different goals. Some monitoring models, as seen in

16] and [HYPERLINK \l "Mazza04gismo:a" 17], make use

of reports and logs derived from data contained in server

temporary files. Other research efforts, such as the one

presented in 18], have used closed-systems and setups, with

their own specific monitoring methods and engines. The study

presented in [HYPERLINK \l "5561329" 19] makes use of

quiz results as input for a research recommender model. The

authors of 20] and [HYPERLINK \l "6033004" 21] feed

their recommenders with web-browsing behaviour. In22], the

authors gain direct access to a Moodle instance database in

order to boot their Predictive a priori algorithm. The model in

[HYPERLINK \l "ElB10" 23] initially presents students

with a test to identify his/her personality in Myers-Briggs

dimensions. The authors in 24] suggest obtaining input data

not only from the server and client sides, but also from proxy

servers. In [HYPERLINK \l "Kardan:2012aa" 25], content

recommendation needs each student to self-monitor

him/herself: learners estimate different indexes themselves and

compare them with actual values, which are retrieved by the

system. The model presented in 26] uses the AprioriAll

algorithm to immediately build sequences from server logs,

which are used in conjunction with tags in order to deliver

recommendations. The model in [HYPERLINK \l

"conf/wec/WangH05" 27] also makes use of the AprioriAll

algorithm using only web logs. In 28], again, only web-

browsing activities of learners are monitored, but these are

then subdivided into web content mining, web structure

mining and web usage mining realms.

We also find learning research software prototypes, like the

PSLC Datashop initiative from the Pittsburgh Science of

Learning Center [HYPERLINK \l

"Stamper:2011:MED:2026506.2026609" 29], which has

defined its own XML DTD schema as a logging scaffold for

their Tutor learning research platform. Some approaches rather

build a dedicated tool or patch applied to a LMS, as in 30]

with the MOCLog project for Moodle.

The Experience API and other standardization proposals for

the monitoring phase, presented below, advocate a completely

new and cohesive approach to this critical phase in the

recommendation/learning analytics workflow.

II. STANDARD SPECIFICATIONS FOR MONITORING

The aforementioned non-standardized approaches to

user/learner monitoring can be applied on fully controlled

scenarios and research projects. However, they turn out to be

unsatisfactory in real academic environments managed by

third-party institutions.

There exist a few proposals that aim at standardizing the

monitoring and logging of user actions. Almost all are based

on the Resource Description Framework, or RDF [

HYPERLINK \l "Pan09" 31]. The idea behind RDF is

something called the triple. A triple can really be condensed to

a plain sentence structure:

 subject

 phrase that characterizes a relationship

 object.

Example: Daniel – is the author of – this paper.

Triples are extremely useful and simple, and provide a

grammar for the so-called semantic web.

Also, some of these specifications include some sort of

software and database back-end service, linked APIs and query

language that allow learning platforms to send and store

monitoring data and third-party learning analytics software to

query and retrieve analysable data. We summarize here the

most important and paradigmatic monitoring specs:

The Caliper framework/Sensor API was proposed by the

IMS Global Consortium and follows the triple metaphor. It is

built around the following concepts (32]): Learning Metric

Profiles that provide an activity-centric focus to standardize

actions and related context; Learning Sensor API and

Learning Events, which drive tools and an associated analytics

service solution; and finally, Learning Tool Interoperability

(LTI), which enhances and integrates standardized learning

measurements with tool interoperability.

 IEEE 1484.11.1/IEEE 1484.11.2 ([HYPERLINK \l

"IEE05" 33]) provides a complex data model structure for

tracking information on student interactions with learning

content. Additionally, an API allows digital educational

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 7

-47-

content coming from the LMS and third-party services to

query and share collected information.

JSON Activity Streams (34]) is the name of the

specification published by IBM, Google, MySpace, Facebook,

VMware and Microsoft. Its goal is to provide sufficient

metadata about an activity such that a consumer of the data can

present them to a user in a rich human-friendly format. It does

not provide a logging service, just the specification of the

message format.

Finally, we also have the Experience API, which will be

addressed in the next section.

Security and privacy models can also be applied in all specs

cited above. Network communications can be encrypted and

the subject can be anything but the learner’s real name.

Learning analytics researchers and logging storage

implementers are responsible for the ethical usage of the

compiled info coming from student monitoring. As with any

other area related to digital mining, trust, accountability and

transparency must always prevail ([HYPERLINK \l "Par14"

35]).

III. THE EXPERIENCE API SPECIFICATION

The Experience API (or xAPI for short) is an eLearning

monitoring specification developed by Rustici Software and

the Advanced Distributed Learning Initiative (ADL), and is

aimed at defining a data model for logging data about

students’ learning paths (36]). It also furnishes an API for

sharing these data between remote systems, as we will see

later. The Experience API allows, among other things, the

tracking of games and simulations, real-world behaviour,

learning paths and academic achievements. xAPI defines

independent mechanisms, protocols, specifications,

agreements and software tools for monitoring any imaginable

scenario (Figure 3): from online campuses and student

behaviour to workforce control ([HYPERLINK \l "6530268"

37]).

Fig. 3. Examples of usage of the Experience API

xAPI also uses JSON to transfer states/sentences to a central

web service. This web service allows clients to read and write

data in the form of sentence objects that share the foundations

of the aforementioned triple scheme. In their simplest

conception, sentences are in the form of actor, verb and

object/activity, like the examples in Figure 4. A JSON xAPI

message could resemble the following:

{“id”: “3f2ef28f-ef1a-4a1f-9f5e”,

 “actor”: {

 “name”: “Peter”,

 “mbox”: “mailto:some@new.user”,

 “objectType”: “Agent”

 },

 “verb”: {

 “id”: “http://.../verbs/solved”,

 “display”: {

 “und”: “solved”

 }

 },

 “context”: {

 “contextActivities”: {

 “parent”: [

 {

 “id”: “http://../objects/problems”,

 “objectType”: “Activity”

 }

]

 }

 }}

More complex statement forms can be used and we will

elaborate more on them in the next section. The set of verbs

and objects an institution can work with is called vocabulary.

Each institution can define its own vocabulary with no

restriction as long as an URL links back each verb and object

to a JSON stream describing it.

Fig. 4. Some examples of xAPI sentences

The Experience API was released, as version 1.0, in April

2013, and there are, as of today, over 100 adopters, projects

and companies involved, such as those in Figure 5.

Fig. 5. Some adopters of the Experience API specification

The specification also contemplates a query API to help find

logged statements, and performs some analytics (averages,

aggregation, etc.) on the data. Finally, the Experience API is

an open-source and free initiative, whose source code and

specifications are open to anyone.

Special Issue on Multisensor User Tracking and Analytics to Improve Education and other Application Fields

-48-

IV. EXPERIENCE API LRS AS AN ELEARNING MONITORING

ENGINE

The core of the Experience API is the Learning Record

Store (LRS). The LRS is a specific module for data storage

that allows an LMS (or any other social platform) to report

tracking information on the learning experience. At any time,

an LMS can send collected data over the network to an

Experience API web service. An LRS is nothing more and

nothing less than a wrapper or API software layer to a SQL

database (initially, a PostgresSQL instance in the original

Rustici implementation), as can be appreciated from Figure 6.

This free LRS implementation was open-sourced by ADL

(available at its Github repository) and is based on the Python

computer language and on the publicly acclaimed Django web

framework.

Fig. 6. Usual LRS software stack and interaction

The learner (actor), verb and object/activity elements

explained above are mandatory when talking to the LRS.

However, they can be complemented with result and a context

extra fields with additional information.

Students who interact with educational content via different

systems or tools will leave traces in the LRS; each of these

tools, if appropriately designed, will provide a totally different

actor/user ID to preserve anonymity.

The verb element is a key part of an LRS communication,

because it describes the action performed by the student. A

URL must also be attached to the verb JSON property,

pointing to its definition. This definition is composed of a

name, a description, and a brief text suggesting plausible uses.

In an eLearning environment, a verb is usually employed in its

past tense form and could be something like: “read”, “tried”,

“failed”, “passed”, “experienced”, etc.

The object/activity part of the statement refers to “what”

was experienced in the action defined in the verb, and usually

corresponds to the learning activity (webinar, wiki, chat room,

forum, mail message, etc.). Objects/activities must also

embody a URL pointing to their rationale, which can include

other information such as a description of the learning activity,

verbs that can apply, possible results and usage suggestions.

The result component provides the denouement to the

statement. It includes score, level of success and completion

fields.

The context part adds more details to the overall statement,

like the relationship of the activity with other activities, its

order in the learning stream, or the teacher’s name.

To every element in a sentence (actor, verb, context, etc.)

sent to the LRS can be added, if needed, any type of pair

key/value with extra information. It is even possible to add

localization information so that an element can be perfectly

identified in all possible languages.

As introduced in Figure 6, an LRS must also implement

REST calls for data transfer (PUT, POST, GET and

DELETE). The Experience API can make use of either OAuth

or HTTP Basic Authentication when communicating with the

outside world, ensuring a certified and secured dialogue

between clients (usually an LMS) and the LRS service.

One of the key aspects of the LRS architecture is that it can

be implemented in shared cloud ecosystems, allowing

communications from very different eLearning platforms and

academic institutions. In other words, monitoring data can be

uniformly stored, allowing rapid, vast and democratic access

to learning analytics information. Also, as LRS servers can

integrate data from many different sources and from the same

user/learner in a harmonized way, recommender systems can

reduce the effects of possible cold-start scenarios.

Some companies are beginning to offer corporate cloud

LRS services at different price tiers: Rustici Software, Saltbox,

Learning Locker, Biscue, Clear, Grassblade, among others.

Some also include compelling online analytics tools.

There exist some free LRS hosting services but mainly for

testing and technology promotion purposes, and not applicable

for research or production environments. It is worth

mentioning the service run by ADL (lrs.adlnet.gov/xAPI) and

the one deployed by Rustici Software (demo.tincanapi.com).

V. THE LIME MODEL AND THE LRS

Now that we have reviewed the most prominent monitoring

techniques and introduced a few recent efforts towards

regulation, we should ask how a real recommender engine

could work with and benefit from a specific RDF-based

source. The Experience API and the LIME model, explained

below, are chosen.

The LIME model, presented in 38], is a tutor-lecturer-

crafted rule-based recommender grounded on four separate

pedagogical components strongly evident in all stages of

education (Figure 7):

 Learning, or what every learner needs to do in order to

assimilate and build knowledge on his or her own.

 Interaction, or relationships established, activities and

academic interaction between students, leading to the

acquisition of knowledge and competencies.

 Mentoring, or what teachers/tutors give relevance to.

 Evaluation, or officially graded activities, in every single

category above listed.

Lecturers-tutors must design a strategy for each of his/her

courses. The model codifies this strategy for a course or class

group by using settings and categories.

A course setting is the balance between formal and informal

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 7

-49-

scenarios. In this context, formal means a regular academic

programme with regular evaluation means (e.g. graded exams);

informal means continuous evaluation and user activity inside

the Learning Management System and every tool linked to it

(e.g. Social Networks or repository). The system collects

specific inputs from both settings, keeping an overall balance

of 100%. For instance, if the designer requires just a formal

setting, the balance should be Informal: 100% - Formal: 0%.

Furthermore, a learning scenario must be defined as the

balance between the Learning, Interaction, Mentoring, and

Evaluation, in combination with the Formal and Informal

settings categories. In the LIME model, every category and

setting are assigned with a specific weight (wi), keeping an

overall balance of 100%.

Fig. 7. Categories and settings in the LIME model

In the LIME model each input (action performed by a

student in the eLearning platform or Social Network) is

attributed a category and a weight, assigned by the

teacher/tutor.

An example of model configuration for a specific site can be

found in Figure 8. Based on these components, tutors can

manually define and parameterize recommendation rules,

which will only trigger a message to the student if conditions

regarding categories, inputs and settings are met.

Fig. 8. Sample configuration of the LIME model for a specific course site

LIME is therefore a tutor-lecturer-crafted, rule-based

recommender system for cloud-institutional learning

environments (SPOCs or MOOCs), which contrasts with other

recommendation paradigms reviewed in previous sections.

LIME’s goal is simply to improve learning efficiency, and to

facilitate the learning itinerary of every student by a

personalised recommendation set.

LIME can be fed from learner inputs in a variety of ways.

However, our model can also be initialized with tracked data

stored in a xAPI LRS instance/server if we make some

assumptions.

How can LIME inputs be built out of information stored in

the LRS? A LIME model input has to define an action and a

context in which a learner performs this action:

 participation in chat

 answer in main forum thread

 message to tutor

 resolution of problem set

 formal broadcast mail to mates

 ratio of emoticons used in communications

 ...

 xAPI verbs and objects, taken in an isolated way, are not

sufficient. However, a joint entity composed of a verb plus an

xAPI object makes more sense in our model, as shown in

Figure 9:

Fig. 9. LIME Inputs from xAPI sentences

As stated above, verbs and objects in the xAPI specification

must be backed by JSON composites with information about

meaning and usage tips. It is up to the implementer to define

which verbs and objects best represent the scenario to be

tracked and monitored. Let us take a look at the sample verbs

and activities available on the official Experience API site

(adlnet.gov/expapi). In Figure 10 are listed all the verbs and

activities the LRS can store and their possible combinations to

build a meaningful and compatible LIME input.

Fig. 10 From xAPI verbs and objects to LIME inputs

As explained in previous paragraphs and as part of the

model configuration, each input should be assigned a weight

(wi), a category and a setting. These parameters should not

reside on the LRS but on the LIME system’s own

configuration repository. In other words, LIME administrators

should maintain an updated equivalency list between LRS

vocabulary and LIME inputs. These inputs will then interplay

with rules (Figure 11), which are, in turn, based on predicate

http://adlnet.gov/expapi

Special Issue on Multisensor User Tracking and Analytics to Improve Education and other Application Fields

-50-

filtering. Predicates are applied over collections of inputs and

highly resemble W3C XQuery or ECMA LINQ, detailed in [

HYPERLINK \l "Saigaonkar:2010:XFS:1858378.1858429"

39],40] and [HYPERLINK \l

"Pardede:jucs_15_10:sqlxml_hierarchical_" 41].

filtering

Inputs list Rule

Inputs matching filter

Fig. 11: Predicate filtering in LIME

As LIME was developed as a Basic Learning Tool

Interoperability (Basic LTI) application, this equivalency list

can even be stored in the LMS database through the LTI

Settings API specification, part of LTI 1.0 and above. The

model thus remains free from external configuration files or

own database management. In order to save this list, it is only

necessary to send a POST HTTP request like the one in the

following example:

POST http://server/imsblis/service/

id=832823923899238

lti_message_type=basic-lti-savesetting

lti_version=LTI-1p0

setting=“participated+chat=message in chat

room; experienced+lesson=read text”

oauth_callback=about:blank

oauth_consumer_key=1213415

oauth_nonce=14c6211cc66d87644f0855511

oauth_signature=IkllkkZ1qfShYBYE+BhC

oauth_signature_method=HMAC-SHA1

oauth_timestamp=1338872426

oauth_version=1.0

It is important to notice that LMS must be LTI compatible

and support the Settings API protocol.

VI. LRS DATA AGGREGATION AND LIME RULES

Once LRS sentences are stored and an agreement between

LIME inputs and these has been established, we have all the

necessary ingredients to trigger recommender rules and deliver

recommendations to students, if applicable. However, rules in

LIME cannot operate upon atomic and individual LRS

records, but only upon averages and aggregated substantial

data, which offer a more equalized view of the learner

situation. An example of this aggregation procedure is

presented in Figure 12:

Figure 12: Aggregation of LRS sentences

Mathematically:

These aggregation operations are covered by the xAPI

standard as well. The Experience API provides a query

language to easily data-mine an LRS. For instance, the

following code collects all the times the user “John” has tried

an exam, and returns an aggregated result:

stmts.where(

 'actor.name = “John” and ('+

 'verb.id =

“http://adlnet.gov/expapi/verbs/passed”'+

 ' or '+

 'verb.id =

“http://adlnet.gov/expapi/verbs/failed”'+

 ')')

The default (and so far only) implementation of this query

language is the ADL.Collection API, written in Javascript and

ready to be used in browsers or on the server-side with

NodeJS. There are two versions of this API: CollectionSync

and CollectionAsync. They are almost the same, but the Async

version runs the queries in a separate worker thread. The

downside of this is that the statements must be serialized and

passed into the worker, which can be slow. On the other hand,

the user interface is more responsive.

VII. CONCLUSION

This paper describes incipient technologies and steps taken

towards the dissemination of standardized monitoring engines.

The engine mainly underlined in this paper is the Experience

API, or xAPI for short. xAPI has been designed to store user

data in a simple, centric, standard, client agnostic and powerful

way. We also discuss the suitability of recommender systems

in general and of the LIME recommender model in particular.

LIME is a rule-based recommendation model. Rules in LIME

require inputs (e.g. learner data and actions taken) that can be

obtained in a variety of ways, like user tracking and

interaction, user performance, or user profile.

We also perform a survey of the most common monitoring

techniques and how they have been implemented in previous

research projects related to recommender systems and learning

analytics in general. With this review we illustrate there is no

agreed way on how to register learner events. All mentioned

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 7

-51-

techniques incorporate a certain percentage of dependency on

the system software being monitored.

Finally, we present the required adaptations and

modifications that xAPI sentences need in order to build

LIME-compatible inputs and how those can be aggregated and

mined in order to feed system rules. On rule execution, our

model delivers suggestions to students and learners. The xAPI

spec atomizes learner actions in verbs and objects, which must

be syntactically combined in order to obtain the

aforementioned inputs. These combinations must be designed

and listed by the tutor/teacher and handed over to our model.

We suggest this equivalency list resides in the LMS’s own

database space, thanks to the LTI Settings API. The

Experience API also offers native aggregation-statistical tools,

which turn out to be of great help in this process.

ACKNOWLEDGMENT

This research is partially funded by UNIR Research

(http://research.unir.net), Universidad Internacional de La

Rioja (UNIR, http://www.unir.net), under the Research

Support Strategy (2013-2015), Research Group TELSOCK.

VIII. REFERENCES

[1] G. Linden, B. Smith, and J. York, "Amazon.com recommendations:

item-to-item collaborative filtering," Internet Computing, IEEE, vol. 7,

no. 1, pp. 76-80, Jan 2003.

[2] F. Ricci, L. Rokach, B. Shapira, and P.B. Kantor, Recommender

Systems Handbook.: Springer, 2010.

[3] Benjamin Marlin, "Modeling User Rating Profiles For Collaborative

Filtering," in NIPS'03, 2003.

[4] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez, "Recommender

Systems Survey," Know.-Based Syst., vol. 46, pp. 109-132, Journal of

Universal Computer Science 2013.

[5] M. Aberdour, "Open Source Learning Management Systems: Emerging

open source LMS markets," 2007.

[6] Fran, Martin Ebner, Alexander Pohl, and Behnam Taraghi, "Interaction

in Massive Courses," Journal of Universal Computer Science, vol. 20,

no. 1, pp. 1-5, jan 2014.

[7] Y. Epelboin, "MOOC in Europe," UPMC-Sorbonne Université, 2013.

[8] Daniel Burgos, Colin Tattersall, and Rob Koper, "Representing

Adaptive and Adaptable Units of Learning," in Computers and

Education.: Springer Netherlands, 2007, pp. 41-56

[9] Jesus Bobadilla, Fernando Ortega, Antonio Hernando, and Javier Alcal,

"Improving collaborative filtering recommender system results and

performance using genetic algorithms," Knowledge-Based Systems,

vol. 24, no. 8, pp. 1310-1316, 2011.

[10] M.AC. González, F.J.G. Penalvo, M.J.C. Guerrero, and M.A Forment,

"Adapting LMS Architecture to the SOA: An Architectural Approach,"

in Internet and Web Applications and Services, 2009. ICIW '09. Fourth

International Conference on, May 2009, pp. 322-327.

[11] S.K. Malik and S. A M Rizvi, "Information Extraction Using Web

Usage Mining, Web Scrapping and Semantic Annotation," in

Computational Intelligence and Communication Networks (CICN),

2011 International Conference on, Oct 2011, pp. 465-469.

[12] A Holmes and M. Kellogg, "Automating functional tests using

Selenium," in Agile Conference, 2006, July 2006, pp. 6 pp.-275.

[13] Tomas Grigalis and Antanas , "Unsupervised Structured Data

Extraction from Template-generated Web Pages," Journal of Universal

Computer Science, vol. 20, no. 2, pp. 169-192, feb 2014

[14] H. Bosch et al., "Innovative filtering techniques and customized

analytics tools," in Visual Analytics Science and Technology, 2009.

VAST 2009. IEEE Symposium on, 2009

[15] P. Hunter, Instant Nokogiri.: Packt Publishing Ltd., 2013.

[16] Angel A. Juan, Thanasis Daradoumis, Javier Faulin, and Fatos Xhafa,

"SAMOS a Model for Monitoring Studentsand Groups; Activities in

Collaborative eLearning," Int. J. Learn. Technol., vol. 4, no. 1/2, pp.

53-72, 2009.

[17] Riccardo Mazza and Christian Milani, "GISMO: a Graphical

Interactive Student Monitoring Tool for Course Management Systems,"

in T.E.L.'04 Technology Enhanced Learning '04 International

Conference. Milan, 2004, pp. 18-19.

[18] Jungsoon Yoo, Sung Yoo, Chris Lance, and Judy Hankins, "Student

Progress Monitoring Tool Using Treeview," SIGCSE Bull., vol. 38, no.

1, pp. 373-377, 2006.

[19] S. Shishehchi, S.Y. Banihashem, and N.AM. Zin, "A proposed

semantic recommendation system for e-learning: A rule and ontology

based e-learning recommendation system," in Information Technology

(ITSim), 2010 International Symposium in, vol. 1, June 2010, pp. 1-5.

[20] K. Takano and Kin Fun Li, "An Adaptive e-Learning Recommender

Based on User's Web-Browsing Behavior," in P2P, Parallel, Grid,

Cloud and Internet Computing (3PGCIC), 2010 International

Conference on, Nov 2010, pp. 123-131.

[21] K. Takano and Kin Fun Li, "An adaptive learning book system based

on user's study interest," in Communications, Computers and Signal

Processing (PacRim), 2011 IEEE Pacific Rim Conference on, Aug

2011, pp. 842-847.

[22] Enrique García, Crist, Sebasti, and Carlosde Castro, "An architecture

for making recommendations to courseware authors using association

rule mining and collaborative filtering," User Modeling and User-

Adapted Interaction, vol. 19, no. 1-2, pp. 99-132, 2009.

[23] El Hassan, A. and El Adani, M. El Bachari E., "Design of an Adaptive

E- Learning Model Based on Learner’s Personality," Ubiquitous

Computing and Communication Journal, vol. 5, 2010.

[24] C. Romero and S. Ventura, "Educational data mining: A survey from

1995 to 2005," Expert Systems with Applications, vol. 33, no. 1, pp.

135-146, 2007.

[25] Ahmad A. Kardan, Nahid Ghassabzadeh Saryazdi, and Hamed

Mirashk, "Learner Clustering and Association Rule Mining for Content

Recommendation in Self-Regulated Learning," International Journal of

Computer Science Research and Application, 2012.

[26] Boban Vesin, Mirjana Ivanovi, Aleksandra Kla, and Zoran Budimac,

"Protus 2.0: Ontology-based semantic recommendation in

programming tutoring system," Expert Systems with Applications, vol.

39, no. 15, pp. 12229-12246, 2012.

[27] Tong Wang and Pi lian He, "Web Log Mining by an Improved

AprioriAll Algorithm.," in WEC (2), 2005, pp. 97-100.

[28] M. K. Khribi M. Jemni, "Toward a Hybrid Recommender System for

E-Learning Personalization Based on Web Usage Mining Techniques

and Information Retrieval," in World Conference on E-Learning in

Corporate, Government, Healthcare, and Higher Education, 2017.

[29] John C. Stamper et al., "Managing the Educational Dataset Lifecycle

with DataShop," in Proceedings of the 15th International Conference

on Artificial Intelligence in Education, Berlin, Heidelberg, 2011, pp.

557-559.

[30] Riccardo Mazza, Marco Bettoni, Marco Far, and Luca Mazzola,

"MOCLog--Monitoring Online Courses with log data," Proceedings of

the 1st Moodle Research Conference, pp. 14-15, 2012.

[31] JeffZ. Pan, "Resource Description Framework," International

Handbooks on Information Systems, 2009.

[32] IMS Global Learning Consortium Inc., "Learning Measurement for

Analytics Whitepaper," 2013.

[33] IEEE, "Data Model for Content to Learning Management System

Communication," IEEE Std 1484.11.1-2004, 2005.

[34] J and Atkins, M and Norris, W and Messina, C and Wilkinson, M and

Dolin, R Snell, "JSON Activity Streams 1.0," 2011.

[35] Abelardo Pardo and George Siemens, "Ethical and privacy principles

for learning analytics," British Journal of Educational Technology, vol.

45, no. 3, 2014.

[36] David Kelly and Kevin Thorn, "Should Instructional Designers Care

About the Tin Can API?," eLearn, vol. 2013, no. 3, 2013.

Special Issue on Multisensor User Tracking and Analytics to Improve Education and other Application Fields

-52-

[37] A del Blanco, A Serrano, M. Freire, I Martinez-Ortiz, and B.

Fernandez-Manjon, "E-Learning standards and learning analytics. Can

data collection be improved by using standard data models?," in Global

Engineering Education Conference (EDUCON), 2013 IEEE, March

2013, pp. 1255-1261.

[38] Daniel Burgos, "L.I.M.E. A recommendation model for informal and

formal learning, engaged," IJIMAI, pp. 79-86, 2013.

[39] Swati Saigaonkar and Madhuri Rao, "XML Filtering System Based on

Ontology," in Proceedings of the 1st Amrita ACM-W Celebration on

Women in Computing in India, New York, NY, USA, 2010, pp. 51:1--

51:6.

[40] James Cheney, Sam Lindley, and Philip Wadler, "A Practical Theory of

Language-integrated Query," SIGPLAN Not., vol. 48, no. 9, pp. 403-

416, 2013.

[41] Eric Pardede, J. Wenny Rahayu, Ramanpreet Kaur Aujla, and David

Taniar, "SQL/XML Hierarchical Query Performance Analysis in an

XML-Enabled Database System," Journal of Universal Computer

Science, vol. 15, no. 10, pp. 2058-2077, may 2009.

M.Sc. Alberto Corbi works as a senior researcher at the

Technology-enhanced Learning & Social Networks

(TELSOCK) research group and as a teaching assistant at

the School of Engineering, both part of the International

University of La Rioja. With a background in physics

(M.Sc. in ocean-atmosphere interaction), computing and

education, he is currently involved in research fields around

recommender systems, eLearning standards and systems

interoperability. Simultaneously, he is working on his PhD thesis around

medical imaging at the Spanish Council for Scientific Research (CSIC).

Prof. Dr. Daniel Burgos works as Vice-Chancellor for

Research & Technology and UNESCO Chair on

eLearning at the International University of La Rioja

(www.unir.net, http://research.unir.net). Previously he

worked as Director of Education Sector and Head of

User Experience Lab in the Research & Innovation

Department of Atos, Spain, and as an Assistant

Professor at Open Universiteit Nederland before that.

His research interests are mainly focused on Adaptive and Informal

eLearning, Learning & Social Networks, eGames, and eLearning

Specifications. He is or has been involved in a number of European-funded

R&D projects, such as Intuitel, Hotel, Edumotion, Inspiring Science

Education Stellar, Gala, IntelLEO, Go-MyLife, Grapple, Unfold, ProLearn,

TenCompetence, EU4ALL, NiHao, Kaleidoscope, Sister, and ComeIn. Prof.

Dr. Burgos holds degrees in Communication (PhD), Computer Science (Dr.

Ing), Education (PhD), and Business Administration. Furthermore, he is a

member of a number of Executive Boards of associations and professional

clusters focused on educational technology and eLearning innovation, for

example Telearc, Telspain, Menon Network, Adie, and others.

