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Abstract — In this paper we study the optimal saving problem 

in the framework of possibility theory. The notion of possibilistic 

precautionary saving is introduced as a measure of the way the 

presence of possibilistic risk (represented by a fuzzy number) 

influences a consumer in establishing the level of optimal saving. 

The notion of prudence of an agent in the face of possibilistic risk 

is defined and the equivalence between the prudence condition 

and a positive possibilistic precautionary saving is proved. Some 

relations between possibilistic risk aversion, prudence and 

possibilistic precautionary saving were established. 

 
Keywords — Possibility theory, Precautionary saving, 

Prudence 

I. INTRODUCTION 

HE effect of risk on saving was studied for the first time by 

Leland [1], Sandmo [2] and Drèze and Modigliani [3]. 

They showed that if the third derivative of the utility function 

is positive, then the precautionary saving is positive. Kimball 

introduced in [4] the notion of prudence and established its 

relation with optimal saving.  

    This paper aims to approach optimal saving and prudence in 

the context of Zadeh’s possibility theory [5]. The first 

contribution of this paper is a model of optimal saving, similar 

to the one in [4] or [6], p. 95. The notion of possibilistic 

precautionary saving (associated with a weighting function f, a 

fuzzy number A representing the risk and a utility function 

representing the consumer) is introduced and necessary and 

sufficient conditions for its positivity are established. The 

second contribution is the definition of the notion of prudence 

in possibilistic sense and its characterization in terms of 

possibilistic optimal saving. The third contribution refers to 

some relations between the degree of absolute prudence [4], 

possibilistic risk aversion [7] and possibilistic precautionary 

saving. Among others, the possibilistic precautionary premium 

is defined as a possibilistic measure of precautionary motive.  

This notion is analogous to (probabilistic) precautionary 

premium of [4]. 

We will survey the content of the paper. In Section 2 are 

recalled, according to [8], [9], [10] the definition of fuzzy 

numbers and some associated indicators: possibilistic expected 

utility, possibilistic expected value and possibilistic variance. 

The equivalence between the concavity (resp. convexity) of a 

continuous utility function and a possibilistic Jensen-type 

inequality is proved.  

In Section 3 the possibilistic two-period model of 

precautionary saving is studied. The consumer is represented 

by two utility functions u and v and the risk, present in the 

second period, is described by a fuzzy number. The expected 

lifetime utility of the model is defined with the help of the 

notion of possibilistic expected utility. The main introduced 

notion is possibilistic precautionary saving. It measures the 

changes on optimal saving produced by the presence of risk in 

the second period. If this indicator has a positive value then by 

adding the risk the consumer will choose a greater level of 

optimal saving. The main result of the section characterizes the 

positivity of possibilistic precautionary saving by the condition 

0v . One also proves an approximate calculation formula 

of possibilistic precautionary saving.  

In Section 4 the notion of prudence of an agent in the face 

of risk situation is described by a fuzzy number. The definition 

of this notion follows the line of [11], [12], where we find a 

formal presentation of probabilistic prudence. The main 

result of the section is a theorem which characterizes 

possibilistic prudence in terms of the previously studied 

optimal saving model. 

Section 5 begins by recalling the Arrow-Pratt index [13], 

[14], the degree of absolute prudence [4] and posibilistic risk 

premium [7]. A result of the section characterizes the property 

of possibilistic risk premium to be decreasing in wealth by the 

comparison between prudence and absolute risk aversion 

(prudence is larger than absolute risk aversion). Then the 

notion of possibilistic precautionary premium is introduced 

and some of its properties which establish relations between 

prudence, possibilistic risk aversion and possibilistic 

precautionary saving are proved.  

The paper ends with a section of concluding remarks.  

II. POSSIBILISTIC  EXPECTED UTILITY 

Fuzzy numbers are the most studied class of possibility 

distributions [10]. Their indicators – the expected value and 

variance represent the main instrument in the possibilistic 

study of risk phenomena [7], [9].  

In this section we will define the fuzzy numbers and their 

indicators and we will prove a characterization theorem of 

convex (resp. concave) functions by possibilistic Jensen-type 

inequalities.  
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Let X be a non-empty set. A fuzzy subset of X (shortly, 

fuzzy set) is a function A:X[0,1]. A fuzzy set A is normal if 

A(x)=1 for some xX. The support of A is defined by 

supp(A)={xR|A(x)>0}. 

Assume X=R. For [0,1], the -level set 
][A is defined 

by 


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(cl(supp(A)) is the topological closure of supp(A).) 

The fuzzy set A is fuzzy convex if 
][A is a convex subset 

of R for all [0,1]. A fuzzy set A of R is a fuzzy number if it 

is normal, fuzzy convex, continuous and with bounded 

support. If A, B are fuzzy numbers and R then the fuzzy 

numbers A+B and A are defined by 

))(),(min(sup))(( zByAxBA
xzy 

  

)(sup))(( yAxA
xy




  

A non-negative and monotone increasing function 

f:[0,1]R is a weighting function if it satisfies the normality 

condition  

1

0

1)(  df . 

Let f be a weighting function and u:RR a continuous 

utility function. Assume that A is a fuzzy number whose level 

sets have the form )](),([][ 21  aaA  for any [0,1]. 

The possibilistic expected utility E(f,u(A)) is defined by: 

 

1

0

21 )())](())(([
2

1
))(,(  dfauauAufE  (1) 

If u is the identity function of R then E(f, u(A)) is the 

possibilistic expected value [9]: 

 
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1
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If 
2)),(()( AfExxu  for any xR then E(f,u(A)) is 

the possibilistic variance [9]: 

 

1
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2
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When f()=2, [0,1], E(f,A) and Var(f,A) are the notions 

introduced by Carlsson and Fullér in [8]. 

Proposition 1. [7] Let g, h be two utility functions and a, 

bR. If u=ag+bh then E(f,u(A))=aE(f,g(A))+bE(f,h(A)).  

Lemma 1. [15] Let u:RR be a continuous utility function. 

The following are equivalent: 

a) u is concave; 

b) For any a, bR, )
2

(
2

)()( ba
u

buau 



. 

Proposition 2. If u is a continuous utility function then the 

following are equivalent: 

(i) u is concave; 

(ii) E(f,u(A))u(E(f,A)) for any fuzzy number A. 

Proof. (i) (ii) Let A be a fuzzy number such that 

)](),([][ 21  aaA  for [0,1]. Since u is concave, the 

following inequality holds: 
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Taking into account that f0 and applying Jensen inequality 

it follows: 




  


df
auau

AufE )(
2

))(())((
))(,(

1

0

21
 






1

0

21 )()
2

)()(
( 


df

aa
u  

)),(())(
2

)()(
(

1

0

21 AfEudf
aa

u 


  


 

(ii)(i) Let a, bR, a<b. We consider the fuzzy number A 

for which aa )(1  and ba )(2  for any [0,1]. Then 

2
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By hypothesis, we will have )
2

(
2
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u
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


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This inequality holds for any a, bR and u is continuous. By 

Lemma 1, it follows that u is concave.        

Corollary 1. If u is a continuous utility function then the 

following are equivalent: 

a) u is convex; 

b) u(E(f,A))E(f,u(A)) for any fuzzy number A.  

 The following result appears implicitly in the proof of 

Proposition 4.4.2 of [7]. 

Proposition 3. If u is a utility function of class 
2C then: 

),()),((
2

1
)),(())(,( AfVarAfEuAfEuAufE 

 

III. A POSSIBILISTIC MODEL OF PRECAUTIONARY SAVING 

In this section we define a notion of precautionary saving in 

the framework of an optimal saving possibilistic model. The 

positivity of precautionary saving shows that the presence of 

risk increases the level of optimal saving. Intuitively this 

points out that the agent is prudent in the face of possibilistic 

risk. The main result of the section characterizes this 

prudence in an intuitive sense by the positivity of the third 

derivative of one of consumer’s utility functions. 
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The probabilistic two-period model of precautionary saving 

from [6], p. 65 is characterized by the following data: 

 u(y) and v(y) are the utility functions of the consumer for 

period 0, resp. 1 

 for period 0 there exists a sure income 0y  and for period 

1 an uncertain income given by a random variable y~  

 x is the level of saving for period 0 

Assume that u, v have the class 
2C and 0u , 0v , 

0u , 0v . The expected lifetime utility of the model 

is: 

))~)1((()()( 0 ysrvMsyusV    (4) 

where r is the rate of interest for saving. 

The consumer’s problem is to choose that value of s for 

which the maximum of V(s) is attained.  

The possibilistic model of optimal saving that we are going 

to build further starts from the same data, except for the fact 

that y~ will be replaced by a fuzzy number. 

We fix a weighting function f and a fuzzy number A whose 

level sets are )](),([][ 21  aaA  for [0,1]. 

The (possibilistic) expected lifetime utility W(s) of our 

model will be defined using the notions of possibilistic 

expected utility from the previous section. 

)))1((,()()( 0 AsrvfEsyusW    (5) 

The relation (5) can be written: 

 

1
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10 ))()1(([
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 dfasrv )())]()1(( 2       (6) 

By derivation, from (6) one obtains: 
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
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1
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which can be written: 

)))1((,()1()()( 0 AsrvfErsyusW  (8) 

    Deriving it one more time it follows 
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    One considers the following optimization problem: 

)(max sW
s

                                              (10) 

    Proposition 4. (i) W is a strictly concave function. 

(ii) The optimal solution )(Ass   of problem (10) is given 

by 0)(  sW . 

    Proof. (i) By hypothesis, 0u , 0v , thus by (9) it 

follows 0)(  sW for any sR.  

(ii) follows from (i).    

By Proposition 4 (ii) and (8), it follows that the optimal 

solution 
s  is determined by the following equality: 

)))1((,()1()( 0 AsrvfErsyu  
 (11) 

Let h:RR be a function of class 
2C . If A is a fuzzy 

number then we denote 
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2
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Proposition 5. The optimal solution 
s of problem (10) has 

the approximate value: 
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Proof. Applying the first order Taylor formula one has: 

)()()( 000 yusyusyu  
  (12) 

By Proposition 3  
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Applying again the first order Taylor formula it follows 
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     Replacing in (13) it follows: 

  )),(()))1((,( AfEvAsrvfE  

  )),(([
2

1
)),(()1( AfEvAfEvsr  

  ),())],(()1( AfVarAfEvsr  




 )],(
2

)),((
)),(([ AfVar

AfEv
AfEv  

)],(
2

)),((
)),(([)1( AfVar

AfEv
AfEvsr


 

 

      from where one obtains: 

  )))1((,( AsrvfE  
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      From (11), (13), (14) we obtain 
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       From where the following approximate value of 
s  

follows: 
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          

       We consider now the optimal saving model in which in 

period 1 we don’t have uncertainty any more: the uncertain 

income A is replaced by the sure income E(f,A). The lifetime 

utility of the model is: 

)),()1(()()( 01 AfEsrvsyuxW      (15) 
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        and the optimization problem becomes: 

)()(max 111

 sWsW
s

                              (16) 

                  

In this case one has 

)),()1(()1()()( 01 AfEsrvrsyusW  (17)              

The optimal solution )),((11 AfEss   of problem (16) is 

given by 0)(1  sW , which, by (17), is written: 

)),()1(()1()( 110 AfEsrvrsyu  
(18) 

The difference 
  1ss will be called possibilistic 

precautionary saving (associated with 0y , r and A). This 

indicator measures the way the presence of the possibilistic 

risk A causes changes in consumer’s decision to establish the 

optimal saving. 

The following proposition is the main result on our optimal 

saving model. The key-element of its proof is the application 

of Proposition 2. 

Proposition 6.  The following assertions are equivalent: 

(i) 0)()( 1   AsAs for any fuzzy number A; 

(ii) 0)(  xv for any xR.  

Proof. Let A be a fuzzy number. From (17) and (11) one 

obtains, by denoting )(Ass   : 

)),()1(()1()()( 01 AfEsrvrsyusW  

  )),()1(()[1( AfEsrvr  

))])1((,( AsrvfE  
 

Since 1W   is a strictly decreasing function one has 

)()( 1 AsAs    iff 

0))(())(( 111   AsWAsW  

Taking into account the value of )(1

 sW computed above 

one obtains: 

)()( 1 AsAs    

iff

)))()1((,()))()1(,(( AAsrvfEAAsrfEv  

 

The previous inequality holds for any fuzzy number A, thus, 

by Corollary 1, the following equivalences follow: 

  )()( 1 AsAs    for any fuzzy number A 

 v is convex 

 0)(  xv for any xR. 

 Condition (i) of Proposition 6 (=the positivity of possibilistic 

precautionary saving) expresses the fact that the presence of 

risk leads to the increase of optimal saving, and condition (ii) 

is the well-known property of prudence introduced by 

Kimball in [4]. Since condition (ii) is present both in 

Kimball’s result and in Proposition 6, we conclude that the 

positivity of possibilistic precautionary saving is equivalent 

with the positivity of probabilistic precautionary saving.  

Example 1. We consider the possibilistic optimal saving 

model with the following utility functions:  
yeyvyu  )()( for yR.  

 We remark that 
yeyvyu  )()( , 

yeyvyu  )()( for any yR.  

Let A be a fuzzy number and f a weighting function. Then 

),(
2

1
)( ),(),( AfVareev AfEAfE

A

   

),(
2

1
)( ),(),( AfVareev AfEAfE

A

   

By Proposition 5, the optimal solution of problem (10) will 

have the approximate value: 
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 The approximate value of 
s  can be written: 
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where 
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If we replace A with the fuzzy point E(f,A) it follows: 
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0
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
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since 0)),(,( AfEfVar . In this case we obtain an 

approximate value of the optimal solution of problem (10): 
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IV. POSSIBILISTIC PRUDENCE  

In this section we will define the meaning that an agent is 

prudent in the face of risk modeled by a fuzzy number. This 

definition is inspired by the concept of prudence in 

possibilistic sense as it has been defined in [12], [11]. Using 

the results from the previous section we will find an equivalent 

formulation of possibilistic prudence in terms of  

precautionary saving. 

Consider an agent with the utility function u of class 
2C  

with 0u , 0u and f a weighting function. If X is a 

random variable then M(X) is its expected value and M(u(X)) 

is the expected utility associated with u and X.  
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The probabilistic utility premium w(x, X, u) associated with 

the real number x, the random variable X and u was introduced 

by Friedman and Savage in [16]: 

))(()(),,( XxuMxuuXxw     (19) 

By [17], the probabilistic utility premium w(x, X, u) 

measures the degree of pain associated with facing the risk X, 

where pain is measured by the loss in the expected utility from 

adding the risk X to wealth x. 

Similarly, we will define the possibilistic utility premium 

w(x, A, u) associated with  xR, the fuzzy number A and the 

utility function u by 

))(,()(),,( XxufExuuAxw    (20) 

Assume that the level sets of the fuzzy number A are 

)](),([][ 21  aaA  for any [0,1]. Then (20) is written: 

 

1

0

1 ))((
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 dfaxu )())](( 2                 (21) 

We recall from [11], [12] what means that the agent is 

probabilistically prudent.  

Let x be the initial wealth, k a positive constant and X a 

random variable with M(X)=0. We denote 

 )())(()(),,,( xuXxuMkxuuXkxS  

))(( XkxuM                               (22) 

One notices that ),,(),,,( uXkxwuXkxS  - 

),,( uXxw  

),,,( uXkxS is called in [17] the prudence utility premium 

and it is interpreted as measuring the increase in pain of 

facing the risk X in the presence of a sure loss k>0. 

By [11], [12], we say that the agent u is probabilistically 

prudent if 0),,,( uXkxS for any triple (x,k,X) as above. 

The above discussion is the starting point in defining the 

possibilistic prudence.  

If x is the initial wealth, k a positive constant and A a fuzzy 

number with E(f,A)=0 then we denote 

)())(,()(),,,( xuAxufEkxuuAkxS  - 

))(,( AkxufE                     (23) 

 

),,,( uAkxS will be called the possibilistic prudence 

utility premium. It has a similar interpretation with the  

probabilistic prudence utility premium ),,,( uXkxS , but we 

have the possibilistic risk A instead of probabilistic risk X. 

One sees immediately that 

),,(),,(),,,( uAxwuAkxwuAkxS    (24) 

Definition 1. The agent u is possibilistically prudent if  

0),,,( uAkxS for any triple (x,k,A) with the above 

significance. 

Remark 1. According to (24), the agent is possibilistically 

prudent iff the possibilistic utility premium w(x,A,u) is 

decreasing in x. 

Proposition 7.  Assume that the utility function u has the 

class 
3C and 0u , 0u . Then the following are 

equivalent; 

(i)The agent u is possibilistically prudent; 

(ii) 0)(  xu for any xR.  

Proof. Deriving (21) w.r.t. x we obtain 

 
1

0

1 ))(([
2

1
)(),,( axuxuuAxw  

 dfaxu )())](( 2  

))(,()( AxufExu   

From the previous inequality and taking into account 

Remark 1 and Corollary 1 the equivalence of the following 

assertions follows: 

the agent u is possibilistically prudent 

 0),,(  uAxw for all x and A 

 ))(,()( AxufExu   for all x and A 

 ))(,()),(( AxufEAxfEu   for all x and A 

u is convex 

 0u                                             

We go back now to the possibilistic precautionary saving 

model from Section 3 (u(y) and v(y) are the utility functions of 

the consumer for period 0, resp. 1).  

Theorem 1. Under the conditions of Section 3 the following 

assertions are equivalent: 

(a) 0)()( 1   AsAs for any fuzzy number A 

(b) 0)(  xv for any xR 

( c) The agent v is possibilistically prudent. 

Proof. (a)(b) By Proposition 6. 

(b)(c ) By Proposition 7.         

Remark 2. The above theorem provides a more intuitive 

meaning to the notion of possibilistic prudence formally 

introduced by Definition 1. Indeed, by the equivalence (a) 

(c) it follows that the agent v is possibilistically prudent iff in 

the presence of risk he chooses a higher level of optimal 

saving.  

Remark 3. In the optimal saving model of Section 3, the 

consumer is represented by the pair of utility functions (u,v). 

As the risk may appear only in period 1 (when the consumer ‘s 

behavior is described by v), the prudence of consumer (u,v) in 

the face of risk coincides with v’s prudence in the face of risk. 

Therefore, under condition (c ) of Theorem 1, we deal with the 

prudence of consumer (u, v). 

V. PRUDENCE AND POSSIBILISTIC RISK AVERSION 

Following the line of Kimball from [4], in this section we 

will investigate the relation between prudence and possibilistic 

risk aversion, issue treated in [7]. Both topics describe two 

attitudes of an agent in the face of risk. By defining 

possibilistic precautionary premium as a case of possibilistic 
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risk premium [7], the results of the theory of possibilistic risk 

aversion are transferred to possibilistic prudence.  

We consider an agent with the utility function u of class 
2C and 0u , 0u . The Arrow-Pratt index ur is 

defined by [13], [14]: 

            
)(

)(
)(

xu

xu
xru




 , xR.                          (25) 

If u has the class 
3C then the degree of absolute prudence 

uP was defined by Kimball in [4]: 

)(

)(
)(

xu

xu
xPu




 , xR.                                    (26) 

One notices that 0uP iff 0u . If ug  then 

gu rP  .  

In the above mentioned papers, ur and uP are indicators for 

analyzing probabilistic risk. 

ur is a measure of risk aversion and uP is a measure of the 

agent’s prudence in the face of risk. By [7], the Arrow-Pratt 

index is an efficient instrument for the study of risk 

represented by fuzzy numbers. 

We fix a weighting function f, a utility function u, a fuzzy 

number A and a real number x. u represents the agent, A the 

risk situation and x is the wealth. We define the possibilistic 

risk premium ),,( uAx as the unique solution of the 

equation: 

)),,(),(())(,( uAxAfExuAxufE  (27) 

In interpretation, the bigger ),,( uAx is, the bigger the 

agent’s risk aversion is.  

 Proposition 8. [7] 

),()),((
2

1
),,( AfVarAfExruAx u    

 Let 21,uu  be the utility functions of two agents such that 

01 u , 02 u , 01 u , 02 u . We denote 
11 urr  , 

22 urr  .  

Proposition 9. [7] The following assertions are equivalent: 

(a) )()( 21 xrxr  for any xR; 

(b) For any xR and for any fuzzy number A, 

),,(),,( 21 uAxuAx   . 

     The above result is the possibilistic analogue of Pratt 

theorem [14]. It shows how using the Arrow-Pratt index one 

can compare the aversions to possibilistic risk of the two 

agents.  

The following proposition establishes a connection between 

the possibilistic risk aversion and prudence. 

Proposition 10.  The following assertions are equivalent: 

(i) For any fuzzy number A, the possibilistic risk premium 

),,( uAx  is decreasing in wealth: 21 xx  implies  

),,(),,( 12 uAxuAx   ;  

(ii) For all xR, )()( xrxP uu  (prudence is larger than risk 

aversion). 

Proof. Let A be a fuzzy number with 

)](),([][ 21  aaA  , [0,1]. From (27) it follows: 

 )),,(),(( uAxAfExu   

 

1

0

21 )())](())(([
2

1
 dfaxuaxu  

Deriving and applying again (27) for ug  one obtains: 

 )),,(),(()),,(1( uAxAfExuuAx   

 

1

0

21 )())](())(([
2

1
 dfaxgaxg  

))(,( AxgfE   

)),,(),(( gAxAfExg   

 From these equalities it follows: 

 ),,( uAx

)),,(),((

),,(),(()),,(),((

uAxAfExu

uAxAfExggAxAfExg








 

 By hypothesis, 0u  and g is strictly increasing, thus the 

following assertions are equivalent: 

 ),,( uAx is decreasing in x 

 For all x, 0),,(  uAx  

 For all x,  )),,(),(( gAxAfExg   

)),,(),(( uAxAfExg   

 For all x, ),,(),,( uAxgAx    

By these equivalences and Proposition 9, the following 

assertions are equivalent: 

 For any fuzzy number A, ),,( uAx is decreasing in x 

For any fuzzy number A and xR, 

),,(),,( uAxgAx    

 For any xR, )()( xrxr ug   

Since )()( xrxP gu  , the equivalence of assertions (i) and 

(ii) follows.                                                          

  The (probabilistic) precautionary premium was introduced 

in [4] as a measure of the strength of precautionary saving 

motive. We define now a similar notion in a possibilistic   

context. 

Let v be a utility function of class 
3C with 0v , 

0v and 0v . The possibilistic precautionary premium 

),,( vAx associated with wealth x, a fuzzy number A 

representing the risk and the utility function v is the unique 

solution of the equation: 

)),,(),(())(,( vAxAfExvAxvfE  (28) 

We returned to the model of precautionary saving of Section 
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3, assuming that v has the class 
3C and 0v , 0v , 

0v . By the optimum condition (11) of Section 3 and 

equation (28), it follows: 

  )( 0 syu  

)))1((,()1( AsrvfEr  
 

)),,)1((),()1(()1( vAsrAfEsrvr     

We consider the case r=0 and u=v. Then  

)),,(),(()( 0 vAsAfEsusyu     

from where, taking into account that u is injective, it 

follows: 

)),(),,((
2

1
0 AfEvAsys             (29) 

Remark 4. The results of Section 4 connect possibilistic 

prudence and possibilistic precautionary saving. The size of a 

consumer’s prudence is evaluated by the level of optimal 

saving 
s : the bigger 

s is, the more prudent the consumer is. 

Relation (29) between 
s and ),,( vAs shows that the 

possibilistic precautionary premium is an indicator of the 

agent’s prudence.  

One notices that ),,(),,( vAxvAx   therefore we 

can apply to ),,( vAx all the results valid for possibilistic 

risk premium. In particular, Propositions 8, 9, 10 lead to 

Proposition 11.  

),()),((
2

1
),,( AfVarAfExPvAx v   

Proposition 12. Let 21,vv be two utility functions of class 

3C  with 01 v , 02 v , 01 v , 02 v , 01 v , 

02 v . The following assertions are equivalent: 

(a) )()(
21

xPxP vv  for any xR 

(b) For any xR and for any fuzzy number A,  

),,(),,( 21 vAxvAx    

Proposition 13. Let v be a utility function of class 
4C  with 

0v , 0v , 0v , 0ivv . The following assertions 

are equivalent: 

(i) For any fuzzy number A, the possibilistic precautionary 

premium ),,( vAx is decreasing in x; 

(ii) 
)(

)(

)(

)(

xv

xv

xv

xv iv







 for any xR.  

The three propositions from above are possibilistic versions 

of theorems of Kimball [4]. Proposition 11 provides an 

approximate calculation formula of possibilistic precautionary 

premium w.r.t. the index of absolute prudence and the 

possibilistic indicators associated with a fuzzy number A. The 

equivalence of conditions (a), (b) of Proposition 12 gives a 

criterion to compare the prudence of the agents represented by 

the utility functions
21,vv . By [12], 

)(

)(

xv

xv iv


 is called the 

degree of temperance of the utility function v. As 
)(

)(

xv

xv




 is 

the degree of absolute prudence of v, the inequality of 

condition (ii) of Proposition 13 expresses the fact that 

temperance is bigger than prudence.  

VI. CONCLUSION 

The possibilistic approach of the optimal saving problem is 

founded on the hypothesis that risk situations are represented 

by fuzzy numbers, and consumers are described by their utility 

functions. The formulation of the possibilistic optimal saving 

problem and the definition of possibilistic prudence use the 

notion of possibilistic expected utility from [7]. The study of 

these two topics and their interconnections use the two main 

possibilistic indicators: expected value and variance [7], [9]. 

 This paper contains the following contributions: 

 The characterization of the concavity of continuous utility 

functions by a possibilistic Jensen-type inequality; 

 The definition of the notion of possibilistic precautionary 

saving and the characterization of its prudence (i. e. the 

optimal saving increases in the presence of risk) by the 

condition of positivity of the third derivative of the utility 

function (= the prudence in the sense of Kimball [4]) ; 

 The definition of the notion of possibilistic prudence 

(following the line of [11], [12]) and its characterization by the 

positivity of precautionary saving 

 The relation between possibilistic risk aversion and 

prudence; 

 The definition of possibilistic precautionary premium as 

strength of possibilistic precautionary saving, its 

approximate calculation and its use to compare the degrees of 

absolute prudence of two consumers.  

We mention a few directions to continue the research of this 

paper: 

- the study of a model of optimal saving and prudence in 

case of several risk parameters represented by fuzzy 

numbers; 

- the study of optimal saving and prudence for situations 

with mixed risk parameters: ones represented by 

random variables, and others by fuzzy numbers; 

- the possibilistic analysis of temperance and other 

higher-order risk attitudes of an agent [18].  
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