
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-7-

Abstract — This paper presents the progress and final state of

CAIN-21, an extensible and metadata driven multimedia

adaptation in the MPEG-21 framework. CAIN-21 facilitates the

integration of pluggable multimedia adaptation tools,

automatically chooses the chain of adaptations to perform and

manages its execution. To drive the adaptation, it uses the

description tools and implied ontology established by MPEG-21.

The paper not only describes the evolution and latest version of

CAIN-21, but also identifies limitations and ambiguities in the

description capabilities of MPEG-21. Therefore, it proposes some

extensions to the MPEG-21 description schema for removing

these problems. Finally, the pros and cons of CAIN-21 with

respect to other multimedia adaptation engines are discussed.

Keywords — ontology, multimedia, adaptation, decision, mpeg-

7, mpeg-21

I. INTRODUCTION

S time goes by, the variety of multimedia formats and

devices has significantly increased, and still does.

Multimedia content providers need to distribute their photos,

videos and audio to a wide-range of devices and independently

of the underlying delivery technology. User-centric adaptation

[1] places the user in the centre of multimedia services and is

also referred as Universal Multimedia Experiences (UME) [2].

The MPEG-21 standard [3] addresses the construction of a

general multimedia framework that is consistent with the idea

of UME. The MPEG-21 description tools enable the

representation of a large set of concepts and relationships.

MPEG-21 relies on the XML Schema to define the structure of

the content and define an implied ontology in the text of the

standard. Parts of the standards have been extended with

description languages with a higher level of expressiveness.

Particularly, the explicit ontology is represented using

semantic description languages such as OWL (Web Ontology

Language). The multimedia research com-munity has

frequently accepted and used this MPEG-21 (pseudo)-

ontology.

This paper compiles the evolution and final state of an

adaptation engine named CAIN-21 [4] (Content Adaptation

INtegrator in the MPEG-21 framework)1. The main purpose of

CAIN-21 is to automate interoperability among multimedia

formats and systems. Interoperability is implemented by means

of an extensibility mechanism. With this mechanism,

pluggable software tools are incorporated to progressively

address wider ranges of adaptations. CAIN-21 automates

interoperability by incorporating a decision mechanism for

multimedia adaptation. This mechanism selects the adaptation

tools and parameters that have to be executed to adapt

multimedia. Furthermore, CAIN-21 exploits multi-step

adaptation. Multi-step adaptation enables the combination and

execution in several steps of the pluggable adaptation tools.

With multi-step adaptations the range of feasible adaptations

that can be achieved increases.

CAIN-21 also aims to provide a framework in which

multimedia adaptation tools can be integrated and tested. The

representation of the multimedia elements has to be formalized

in order to make these tests2 repeatable. To represent the

multimedia elements of the tests, a set of MPEG-21

description tools have been selected. Currently, MPEG-21 is

the most comprehensive multimedia description standard for

the deployment of multimedia applications/systems. However,

in practice description standards never cover 100% of the

concepts. In the case of CAIN-21, we have encountered some

difficulties using the MPEG-21 description elements. These

difficulties were solved extending the description tools and

implicit ontology that MPEG-21 provides. After presenting

CAIN-21 architecture, this paper discusses these issues. We

consider helpful to highlight it for people involved in the

construction of multimedia adaptation systems, especially if

they are determined to provide MPEG-21 interfaces to their

users. The clarification of these problems may also be useful

for people who intend further interaction with other non-

MPEG-21 compliant multimedia systems.

1 The CAIN-21 software together with a CAIN-21 demo are publicly

available at http://cain21.sourceforge.net
2 This paper demonstrates our proposal with an empirical study. We use

the term test (instead of experiment) to indicate that its execution always

yields the same results.

Fernando López1,2, José M. Martínez2, Narciso García3

1 VINTEC, Universidad Internacional de la Rioja, Spain, fernando.lopez@unir.net

2 VPULab, EPS - Universidad Autónoma de Madrid, Spain, {f.lopez, josem.martinez}@uam.es
3 GTI, ETSIT - Universidad Politécnica de Madrid, Spain, narciso@gti.ssr.upm.es

A

CAIN-21: Automatic adaptation decisions and

extensibility in an MPEG-21 adaptation engine

DOI: 10.9781/ijimai.2013.241

-8-

The publication in [4] summarizes the interfaces, the

architecture of CAIN-21, and the evolution from Early CAIN

to CAIN-21, and provides a preliminary comparison with other

adaptation engines. Now that CAIN-21 has reached a stable

and mature state, this publication supersedes [4] by providing

an extended, comprehensive and updated description of CAIN-

21.

In particular, this new publication describes the delivery and

adaptation methods used in CAIN-21 as well as the binding

modes. The publication also describes and provides usage

examples of the ConversionCapabilities and

ConversionCapabilities description tools, incorporates the

properties relationships, the KISS principle behind this design,

the use of composed properties to address complicated

relationships, and proposes new ideas, such as the distinction

between implied and explicit ontologies and the advantages of

considering MPEG-21 as a simple (pseudo)-ontology. The

updated multimedia adaptation engines comparison in Section

VI adds ConversionLink to the comparison, adds new aspects

to the comparison (i.e., multistep, extensibility and semantic

adaptation), discusses the reasoning behind the different

approaches taken over the years and the pros and cons of the

different decision methods. Finally, this publication appends

several tests that illustrate the multimedia adaptation method

proposed in this paper, and justifies the need for the proposed

extensions to the MPEG-21 standard.

In the rest of this paper, Section II reviews the state of the

art concerning semantic web description and the description

tools that MPEG-21 provides for multimedia adaptation. It

also introduces some automatic multimedia adaptation

techniques. Section III describes the main features and

elements of CAIN-21. Section IV offers innovative description

tools that fill the description gaps identified in the standard and

justifies their usefulness. Section V provides a set of tests that

demonstrate and validate these extensions. Section VI provides

a comparative analysis between CAIN-21 and other

multimedia adaptation engines. Finally, Section VII gathers

the innovations and advantages of the adaptation techniques

explained in the paper and it provides some conclusions.

II. STATE OF THE ART

A. Semantic web for multimedia

The Semantic Web [5] aims to represent knowledge in a

format that can be automatically processed without human

intervention. For this purpose the machine must be capable of

understanding the concepts and relationships thereby

described. The Semantic Web Stack [5] defines a stack of

languages in which each layer uses the description capabilities

of the layer below it to provide a higher level of

expressiveness. In this stack, the technologies up to RDF,

OWL and SPARQL have been standardized and accepted. The

term ontology is used to refer to the concepts (usually defined

with a formal vocabulary) and relationships in a specific

domain. This ontology is frequently represented with OWL

creating a semantic graph. The technologies in the top of the

stack use the semantic graph to infer additional knowledge.

Currently, it is not clear how to implement the technologies on

the top of the stack. Automatic reasoning has been frequently

proposed to infer this additional knowledge. However, the

results of these top-level technologies are still limited to

achieve the ultimate aim of the Semantic Web: the sharing,

processing and understanding of data by automatic systems in

the same manner that people can do.

To build a multimedia system that automatically manages

and understand multimedia content, it is crucial to define the

ontology of its multimedia concepts: Fig. 1 depicts this idea.

Bold lines represent better levels of understanding. The figure

shows that the user is capable of understanding the meaning of

the media, but has more difficulties reading the description of

the content. For instance, it is easier for the user to identify a

dog in a picture than to interpret its MPEG-7 description [6].

On the other hand, the computer can extract information from

metadata more easily than it can analyse the corresponding

media resource.

Fig. 1: Semantic description of multimedia content

In the field of multimedia, two widely accepted implied

ontologies are the MPEG-7 [6] standard for the media content

and MPEG-21 [3] for the whole multimedia system. These

standards make use of metadata to achieve a better

understanding of multimedia. Particularly, these standards

propose several vocabularies to represent a detailed

description of the meaning of the multimedia elements.

MPEG-7 and MPEG-21 tend to define the external interface of

the multimedia systems and leave the algorithms that

implement it (e.g. reasoning) to the industry and research

community. The W3C Consortium has also initiated a project

to represent multimedia ontology called Multimedia

Vocabularies on the Semantic Web [7]. Even although this

standard fully exploits OWL, which has a higher level of

expressiveness and ability to represent knowledge, at time of

writing, the majority of multimedia research relies on MPEG-7

and MPEG-21.

B. MPEG-21

This section reviews the state of the art for the MPEG-21

description tools to which this paper contributes. A complete

description for the MPEG-21 standard can be found in [3].

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-9-

1) Content description and conditional elements

The notion of Digital Item (DI) is a fundamental concept

within MPEG-21. A DI is a general representation for any

multimedia element. This element can represent both the

multimedia content and the multimedia context. MPEG-21

Part 2 [3] standardises the representation of a DI in the case of

multimedia content. A DI may contain one or more

Component3 elements. Each Component includes one

Resource element and zero or more Descriptor elements. The

Resource element references the media and the Descriptor

element provides metadata for this media. The MPEG-21

allows optional, alternative and conditional elements. For the

purposes of this paper we are only going to describe

conditional elements. A conditional element is an element of

the DI that appears only when certain conditions are true.

Certain elements of the DI are configurable, i.e., their content

varies depending on the value of Predicate elements. A

Predicate element can take the values true, false or undecided.

The Choice element enables a “menu”. The options of this

menu are provided through Selection elements. The Selection

elements are used to define in runtime the values of the

Predicate elements. The MPEG-21 standard does not define

how the values of the Predicate elements are obtained. These

values can be asked to the user or automatically decided by the

multimedia system. The value of some Predicates can be even

unknown in runtime, in which case they take the undecided

value. A Condition is a conjunction (and operator) of one or

more predicates. The Condition elements are used to specify

which elements of the DI are valid in runtime. Only the

elements for which the Condition is true are considered part of

the DI. For instance, several Component elements may contain

a Condition element. In runtime, only the Component whose

Condition is true is considered part of the DI.

2) MPEG-21 adaptation tools

MPEG-21 Part 7 [3] has defined a set of description tools

(or merely tools) for multimedia adaptation. These tools do not

specify how the adaptation has to be performed; they only

gather the information necessary for adapting a DI. These tools

are collectively referred as Digital Item Adaptation (DIA)

tools. The instances of these tools are referred as DIA

descriptions (or merely descriptions). This section reviews the

Usage Environment Description (UED) tools, the DIA

Configuration tools and the ConversionLink tools.

3) UED tools

These tools enable the description of the terminal

capabilities, the network constraints, the user’s characteristics,

preferences and natural environment. The term usage

environment description (or merely usage environment) refers

to an instance of one or more UED tools. Further description

of the UED tools can be found in [3].

3 MPEG-21 capitalises and italicises XML description tools. This paper

adopts this rule.

4) DIA Configuration tools

The DI author can use the DIA Configuration tools to

recommend how to adapt the content to the usage

environment. Specifically, the DIA Configuration tools include

two tools to drive the adaptation. The first tool allows the DI

author to indicate how to obtain the options of the Choice

conditional mechanism explained above. For this tool, the

standard defines only two values: UserSelection indicates that

the selection has to be done by the user.

BackgroundConfiguration indicates that the system has to

automatically perform this decision.

The second tool is the SuggestedDIADescription. The DI

author uses this tool to point out which parts of the DI or DIA

descriptions have to be used to decide the adaptation.

Specifically, XPath [8] expressions are used to provide this

information. For instance, the DI author may recommend using

the Format element of the VideoCapabilitiesType in the UED

to make the adaptation decision. A further description of these

tools can be found in [3].

5) ConversionLink tools

The ConversionLink tools appear in [9] to complement the

BSDLink tools. The ConversionLink tools are intended to

address generic adaptation (e.g. transcoding, transmoding,

summarization) whereas the BSDLink are intended for scalable

bitstream adaptation. The MPEG-21 standard defines a

conversion as a processor (software or hardware) that changes

the characteristics of a Resource or of its corresponding

Descriptor elements. The ConversionLink tools include the

ConversionCapabilitiesType tool. This tool expresses the types

of conversions that a terminal is capable of performing. The

content of this tool is not standardised, instead, it provides a

derivation-by-extension mechanism allowing the inclusion of

conversion descriptions. A further description of these tools

can also be found in [10].

C. Multimedia adaptation-decision making methods

Typically, multimedia adaptation is performed in two

phases, which usually execute in a sequential manner

[11][13][14][15]. Firstly, a decision phase is used to evaluate

which adaptations best suits the constraints of the usage

environment. Secondly, in the execution phase, these

conversions are performed on the media and metadata

conveyed in the DI. For the decision phase, two different

methods have been widely investigated in the literature:

1) Quality-based methods [11][12][13] (also referred as

optimisation-based methods) aim at finding the adaptation

parameters that maximise the quality (also referred to as

utility) resulting from the adaptation to the constraints of the

usage environment. These methods operate by solving an

optimisation problem in the Pareto frontier. Frequently, the

MPEG-21 Part-7 DIA tools have been used to point out these

relationships between the adaptation parameters and

corresponding utilities.

2) Knowledge-based methods [14][15][16] have been used

primarily to determine whether a conversion can be executed

-10-

and which parameters must be supplied to adapt the content.

These methods usually consider the concatenation of several

conversions in a sequence. They have also been referred as

multi-step adaptation.

CAIN-21 (described in Section III) combines both methods

in sequence. Firstly, the knowledge-based methods use the

media format to decide which conversions have to be carried

out in order to adapt the content to the usage environment.

This method is further explained in [17]. Secondly, certain

“intelligent” conversion tools incorporate the capability to

select the parameters that optimise their output. The quality-

based methods that CAIN-21 incorporates are demonstrated in

[18].

D. Related multimedia adaptation engines

This subsection introduces related multimedia adaptation

engines. Section VI compares these adaptation engines with

CAIN-21.

Mariam [10] has studied the applicability of a standard

AdaptationQoS description tool to drive general (scalable and

non-scalable) resource adaptation. This investigation

concludes developing the ConversionLink4 adaptation engine

togueter with the ConversionLink description tool. The

ConversionLink tool was later standardized in [9]. This tool

has already been described in Subsection II.B.

Debargha et al. [11] explained the basis of the

AdaptationQoS description tool and its usage. Christian et al.

[12] builds on this description tool to implement the idea of

coded-independent resource adaptation for scalable resources.

To this end, they have researched the BSDLink tools

(introduced in Subsection II.B). In [12] they explains the use

of the notion of Pareto optimality and multi-attribute

optimisation to identify the scalable layers that best suit the

terminal constraints [16].

Jannach et al. [15] developed the koMMa framework in

order to demonstrate the use of Artificial Intelligence planning

in multistep multimedia adaptation. They exploited Semantic

Web Services to address interoperability. They also proposed

an extensibility mechanism by means of pluggable Web

Services.

Anastasis et al. describe the DCAF adaptation engine in

[20]. This research showed how to use heuristic genetic

algorithms to identify the parameters of the AdpatationQoS

description tool. The UED and UCD description tools are used

to represent the context of the adaptation. The notion of Pareto

optimality is also introduced to rank the possible decisions.

Davy et al. [21] have built on the aforementioned

AdaptationQoS, BSD and UED description tools to develop

the NinSuna adaptation engine. This engine provides both

coding-format independence and packaging-format

independence. The major innovation of this engine is

leveraging Semantic Web technologies to accomplish semantic

adaptation decisions. The semantics are explicitly represented

4 Note that the symbol ConversionLink is not italicized to refer to the

adaptation engine. However, it is italicized to refer to the description tool.

with RDF tuples and in this way they introduce formal

semantics in the exiting MPEG-21 adaptation description

tools.

E. Delivery and adaptation methods

From the standpoint of the media client, there are two main

media delivery models [22]: download, where the client starts

to play the media content after completely receiving the media

from the server, and streaming where media content is played

while data reception is in progress. Streaming servers usually

cover two methods to deliver video to the users:

1) Live video. Broadcast of live events in real time. This

streaming is useful when the client expects to receive video as

soon as it is available. Live events, video conferencing, and

surveillance systems are commonly streamed over the Internet

as they happen with the assistance of broadcasting software.

The video recording software encodes a live source (video or

audio) in real time and transfers the resulting media to the

streaming server. The streaming server then serves, or

"reflects", the live stream to clients. Regardless of when

different customers connect to the stream, each sees the same

point in the stream at the same time.

2) Video On Demand (VOD). Each customer initiates the

reception of the media from the beginning, so no customer

ever comes in "late" to the stream. For instance, this mode can

be used to distribute movies to users who play those movies at

different times.

According to the moment at which the adaptation takes

place; media adaptation can be divided into three adaptation

modes:

1) Offline Adaptation mode (OffA mode). The adaptation is

performed in the background and before the media is available

to the user. This mode is adequate for on demand media

delivery. However, this mode is not suitable for live video

because the user is expecting to watch the video event as soon

as it occurs. This adaptation requires previous knowledge of

the feasible terminal capabilities and network bandwidth. The

media can be prepared for several terminals of network

capacities. The main limitation of the OffA mode is that the

user’s preferences and natural environment constraints are not

taken into account. These parameters are unknown when the

media repository is created. While creating a repository of

adapted resources for each user’s profile is possible, it is

unmanageable from a practical point of view when the number

of user’s profiles increases.

2) On Demand Adaptation mode (OdA mode). Adaptation

takes place at the same time that the user asks for the resource.

In this mode, the client’s characteristics, preferences and

natural environment can be taken into account. However, if the

resource adaptation process is time consuming, the user has to

wait until the whole resource is adapted. Therefore, this

adaptation results useful for small resources (e.g. images), but

can become unacceptable for long resources (e.g. video or

speech).

3) Online Adaptation Mode (OnA mode). As with the OdA

mode, user’s characteristics, preferences and natural

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-11-

environment can be taken into account. In this mode also the

adaptation begins as soon as the user asks for the resource.

However, in contrast to the OdA mode, in the OnA mode the

resource begins to be delivered to the user before the whole

resource has been adapted. This adaptation is appropriate for

long resources (and perhaps also for small resources). The

drawback of this approach is that, in general, implementing

this solution efficiently is difficult. In OnA mode we need to

ensure that media data fragments are delivered to the client in

time to maintain playback continuity. The advantage is that

once implemented, the OnA mode can be reutilized to simulate

the OffA and OdA modes.

III. CAIN-21: SYSTEM DESCRIPTION

This section sequentially describes the CAIN-21 software

interfaces, the architecture and the control flow. Section IV

builds on this section to specify the description tools that

CAIN-21 utilizes and justifies their extension.

A. Software interfaces

CAIN-21 serves adaptation requests through two external

software interfaces (see Fig. 2 below): (1) The media level

transcoding interface performs blind adaptation (i.e.

semantic-less adaptation) of a media resource. In addition to

the media level, this interface can also perform system level

adaptation, i.e., videos composed of one or more audio and

visual streams. The media level transcoding operations are

implemented in the Tlib module. This module includes

conventional software libraries such as ffmpeg, imagemagick

as well as Java Native Interface (JNI) custom libraries. (2) The

DI level adaptation interface is in charge of performing

system level (semantic or blind) adaptations. In this case

metadata is used during the adaptation.

The DI level adaptation interface complies with the MPEG-

21 representation schema. The Content DI conveys the media

resource together with its metadata to be adapted. To drive the

adaptation, CAIN-21 uses four DIA description tools. Only the

Content DI and DIA description tools follow fully the MPEG-

21 recommendations. For the point of view of these interfaces,

CAIN-21 is a replaceable black box. Fig. 2 provides a view of

CAIN-21 consistent with the idea of an adaptation engine that

the MPEG-21 Part-7 framework proposes.

Fig. 2: Software interfaces of CAIN-21

In CAIN-21, metadata-based adaptation [23] is performed

through the DI level interface and at the Component level. An

MPEG-21 Component includes a media resource (in the

Resource element) and its metadata (in the Descriptor

element). The Descriptor elements use MPEG-7 Part 3, Part 4

and Part 5 [6] to describe the multimedia content. The DI level

adaptation interface provides two different operations. The

first one modifies the existing Component and the second

operation adds a new Component element to the DI. More

specifically: (1) the transform() operation takes a Component

from the Content DI and modifies its media resource and

metadata in order to adapt it to the usage environment; (2) the

addVariation() operation takes a Component from the Content

DI and creates a new Component ready to be consumed in the

usage environment. At the end of this adaptation, CAIN-21

adds this adapted Component to the Content DI.

B. Architecture

This section provides a detailed description of the CAIN-

21’s modules. Fig. 3 depicts CAIN-21's functional modules

and the control flow along the adaptation process. The rest of

this subsection explains the modules and description tools in

the figure.

1) Adaptation Management Module (AMM)

The AMM is responsible for coordinating the entire DI level

adaptation process. Modules below the AMM perform

different tasks initiated by the AMM.

2) Adaptation Decision and Execution Modules (ADM and

AEM)

Subsection 8.C explained that frequently adaptation engines

divide the decision and the execution into two different phases.

Firstly, a decision phase is used to decide which adaptation

best suits the constraints of the usage environment. Secondly,

in the execution phase, these adaptation actions are performed

on the media conveyed in the DIs. CAIN-21 also includes this

distinction implemented in the Adaptation Decision Module

(ADM) and the Adaptation Execution Module (AEM),

respectively.

Fig. 3: Modules and control flow within CAIN-21

3) Conversions and Component Adaptation Tools (CATs)

As explained in Subsection II.B, MPEG-21 Part-7 defines a

-12-

conversion as the process that changes the characteristics of a

resource. In general, a conversion performs the act as defined

by the MPEG-21 Part-6 term adapt. In CAIN-21, a

Component Adaptation Tools (CATs) is a pluggable software

module that implements one or more conversions. Multi-step

adaptation allows for the sequential execution of the

conversions implemented in one or more CATs. The ADM

uses metadata to determine the sequence of conversions and

parameters that should be executed over a Component element

of the Content DI. Subsequently, the AEM executes such

sequence of CATs on the original Component. When a CAT is

executed, both the conversion to execute and the parameters of

the conversion have to be provided. If CAIN-21 receives

multiple requests to adapt the same content to the same usage

environment, a caching mechanism speeds up this process by

bypassing the execution of the Planner and Executer several

times.

During their execution, CATs have the option of appending

information to the Descriptor element of the Component so

that subsequently CATs can use it. We use the name static

decisions to refer to metadata-based decisions. Static decisions

do not depend on the resource content (only the Descriptor)

and the ADM is responsible for these decisions. On the

contrary, we use the term dynamic decisions to refer to

adaptation decisions that perform operations over the resource

content. Dynamic decisions cannot be taken until the resource

is available and the CATs take them. These dynamic decisions

usually correspond to semantic decisions or quality-based

decisions. Frequently semantic decisions assume particular

content (e.g. faces, soccer, news items, violent scenes in the

movie). For example, in [19] we assume the existence of faces

in the images. Quality-based decision methods have been

described in Subsection II.C and demonstrated in [18].

4) Context Repository

As further described in Subsection IV.A, CAIN-21 defines a

type of DI referred to as Context DIs. These Context DI

elements store DIA descriptions with information concerning

the context in which the adaptation takes place.

 The Context Repository in Fig. 3 includes the three

Context DIs. The Usage Environment DI describes the

available usage environments using several MPEG-21 UED

elements (i.e. instances of the UED tools). Each CAT

Capabilities DI describes the different conversions that a CAT

is able to perform. Each conversion has a set of valid input and

output properties along with their corresponding values. The

relationships among these elements are described in more

detail in Subsection IV.C.

 CAIN-21 includes an addressing mechanism in which

changes in the metadata descriptors will not imply changes in

the underlying source code. This mechanism is described in

detail in Subsection IV.E. The mechanism represents all the

multimedia information by means of properties. Each property

has one key and one or more values. The advantage of this

representation is that it suits the decision mechanism that we

have developed for CAIN-21 [17]. The Properties DI is

intended to store a set of keys and corresponding xpointer()

[24] expressions providing access to the actual values. In Fig.

3, dashed arrows indicate that the xpointer() expressions in the

Properties DI are stored in the other DIs.

5) Configuration DI

The Configuration DI is a DIA description indicating which

description of the terminal, network and user from the ones

available in the Usage Environment DI to use during a

adaptation request. Subsection II.B explained that MPEG-21

recommends using the Choice descriptor and DIA

Configuration description tool to specify the adaptation to

perform. CAIN-21 does not use this standard mechanism;

instead it uses the Configuration DI to indicate the parameters

of the adaptation to perform. Subsection IV.A justifies this

change and explains the advantages that this proposal yields.

6) Parsing Module (PM)

The PM is responsible for resolving the values of the

aforementioned properties. Firstly, the PM accesses the

Properties DI to obtain the set of property keys and

corresponding xpointer() expressions. Secondly, after

resolving these expressions, the values of these properties are

generated. During this step, the rest of the metadata is loaded

from the Content DI, Configuration DI, Usage Environment

DI and CAT Capabilities DI. After parsing the different DIs,

all the metadata is represented as a set of properties. The value

of these properties can be multi-valued (e.g. bitrate =

[1000..200000], audio_format = {aac, mp3}).

7) Coupling Module (CM)

A wide range of multimedia representation standards exists

to represent multimedia content (e.g. HTML, SMIL, NewsML,

MPEG-4 BIFS). CAIN-21 can be integrated into

heterogeneous multimedia systems that may be using external

representation technology (i.e., non-MPEG-21 technology).

The CM is the gateway that enables such integration. To this

end, this module transforms the external representation of

multimedia into an MPEG-21 compliant input Content DI that

afterwards CAIN-21 processes. In addition, the CM is

responsible for transforming the adapted output Content DI

into its external representation. Instances of the CM are

interchangeable modules created to interact with different

external representations. In practice, there is a semantic gap

during this interaction with the external multimedia description

standards, i.e., a direct correspondence between the external

descriptors and the MPEG-7/21 descriptors might not exist. To

provide these additional meanings, MPEG-7 Part 5 offers a set

of open Classification Schemes (CSs) [6], which indicates

what these external descriptors mean.

C. Control flow

The numbers in Fig. 3 indicate the control flow of the tasks

in the adaptation process. (1) When interacting with external

systems, the CM transforms the external multimedia

representation into a Content DI that CAIN-21 can process. (2)

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-13-

The Content DI together with a Configuration DI arrives via

the DI level interface transform() or addVariation()

operations. (3) The AMM is in charge of coordinating the

whole DI level adaptation process. Specifically, the AMM

invokes in sequence the ADM and the AEM to (4) decide and

(5) execute the corresponding adaptation on the original

Component. (6) The CATs use the TLib services to adapt the

media resource. The CATs might also change or append

information to the Descriptor element of the Component so

that the subsequent CATs may use it. (7) Once all the

conversions of the sequence have been executed, (8) the AMM

returns the adapted Content DI to the caller. (9) Frequently,

the adapted Content DI may need to be transformed to an

external representation and in this case, the CM performs this

transformation.

IV. CAIN-21'S EXTENSIONS TO THE MPEG-21 SCHEMA

CAIN-21 uses the description tools that MPEG-21

standardises. The following subsections identify a set of

limitations and ambiguities in the description capabilities of

MPEG-21. They then propose some extensions to the MPEG-

21 description schema. The additions are justified in order to

remove these limitations and ambiguities. The following

subsections also discus how these extensions make possible to

address a new range of multimedia adaptation problems.

A. Content DI, Context DI and Configuration DI

Subsection II.B explained that in MPEG-21 framework

different DIs are used throughout the consumption and

delivery chain. The DIs can be classified according to their

purpose. One initial approach in the literature has divided the

DIs into Content DIs and Context DIs. The Content DI is a DI

intended to carry out the multimedia resource and

corresponding metadata. The Context DI is intended to contain

a description of the usage environment. The notions of Content

DI and Content DI have been considered by the MPEG-21

standard (see for instance [25]) although they have not been

finally incorporated to the standard. However, some authors

have informally used these notions in their systems [26][27].

Particularly, these authors have used the term Context DI

only to reference the usage environment [25][26][27]. In [28],

we proposed to extend the idea of Context DI to represent the

context information. Particularly, in CAIN-21 there are three

types of context elements: the Usage Environment DI, the CAT

Capabilities DIs and the Properties DI. Subsection III.B

described these elements.

Furthermore, CAIN-21 configures the adaptation using the

DIA Configuration description tools (described in Subsection

IIII.B). After an adaptation request, the DIA Configuration

tools can be used to specify the target usage environment.

Although there are scenarios in which the DIA Configuration

tools is applicable, we have identified two limitations in the

standard DIA Configuration mechanism:

1. The standard Content DIs uses the Choice description

element to enclose alternative adaptation options, which

depends on the available terminals. This produces a

dependency between the Content DI (which contains the

Resource and optionally a DIA Configuration description) and

the Usage Environment DI. This dependency implies changing

the Content DI whenever the Usage Environment DI is

modified (e.g. one of the terminal descriptions is changed).

2. DIA Configuration assumes that the entire usage

environment is known when the Usage Environment DI is

created.

The idea of using three DIs avoids the first limitation:

1. The Content DI with the multimedia resource and

corresponding metadata.

2. The Context DI that acts as a database where usage

environment, adaptation capabilities and metadata properties

under consideration are stored.

3. The Configuration DI that includes a DIA Configuration

description.

The Configuration DI also solves the second limitation: the

Content DI and the Context DI are created and stored in

CAIN-21 during its development or deployment. The

Configuration DI is dynamically created to provide to CAIN-

21 information about the adaptation request to be performed.

Next section describes the ARC description tool that the

Configuration DI conveys. The main aim of our proposal is

that the Content DI will not be modified when the Usage

Environment DI changes.

B. The ARC description tool

Section IIII.B described the two DIA Configuration

description tools that MPEG-21 Part 7 standardises: (1) The

UserSelection/BackgroundConfiguration elements indicate

whether the DI Choice/Selection mechanism must be presented

to the user or automatically decided by the system. (2) The

DI’s author uses the SuggestedDIADescriptions to suggest

which DIA Description elements should be used for the

adaptation. Both methods assume the existence of a

negotiation mechanism. Authors such as [26][29] have

followed this approach incorporating the DIA Configuration

description in the DI to be consumed. CAIN-21 is not a

network agent (as in the DIA Configuration usage model

developed in [3]) but a middleware providing an API.

Previous subsection introduces the problem of selecting zero

or one instance of the standard MPEG-21 Part 7 UED

description tools (i.e., Terminal, Network and User5 elements)

from the Usage Environment DI. If we relax the network agent

negotiation assumption we can utilise the DIA Configuration

to specify the particular usage environment. CAIN-21 extends

the DIA Configuration to provide this information, i.e., it

defines a third DIA Configuration tool (non-considered in

MPEG-21). This extension is called Adaptation Request

Configuration (ARC) tool. Consider, for instance, two

terminals in the Usage Environment DI, a mobile terminal and

a laptop terminal. In this case, an ARC description can be used

5 Currently CAIN-21 does not consider the NaturalEnvironment

description tool, but its inclusion would be a direct process.

-14-

to indicate the target terminal. The Content DI and the Usage

Environment DI can be deployed before starting the adaptation

engine. On the contrary, the ARC description is only created

when an adaptation is going to be executed.

C. CAT Capabilities

The large quantity of multimedia adaptations that could be

envisioned makes it unfeasible to implement all of them.

Subsection III.B has introduced the notion of pluggable CATs.

Their adaptation capabilities are described in CAT Capabilities

DIs (also introduced in Subsection III.B). One CAT can be

used as soon as this CAT and its corresponding CAT

Capabilities DI are plugged in CAIN-21.

1) CAT Capabilities and Conversion Capabilities

The notion of CAT Capabilities was introduced in [28]. The

following paragraphs describe the current CAT Capabilities

description tool of CAIN-21 and compare it with the standard

ConversionLink [9].

Subsection II.B explained that MPEG-21 Part 7

Amendment 1 defines a conversion as an (software or

hardware) element capable of performing multimedia

adaptation. The original CAT Capabilities only allowed

describing one conversion. The final CAT Capabilities can

incorporate several conversion elements. During the

development of CAIN-21, we observed the practical fact that

conversion capabilities are not always easy to describe with

only one conversion. With some types of adaptations, we need

to divide the capabilities of an individual CAT Capabilities

element into several Conversion Capabilities elements.

Consider, for example, a CAT that is capable of accepting

JPEG and PNG images, but PNG images are accepted only in

greyscale, whereas JPEG images are accepted in both colour

and greyscale. In this case, the CAT Capabilities DI must be

split into two separate Conversion Capabilities. The first

Conversion Capabilities element states that PNG images are

accepted in greyscale. The second Conversion Capabilities

element states that JPEG images are accepted in both colour

and greyscale.

The second major feature implies the description of the

values that properties can take. In the CAIN-21 decision

process, preconditions, postconditions and parameters can take

several possible values (e.g. format = {mpeg-1, mpeg-2, mpeg-

4}). We have modified the description of the conversions so

that each input and output property can take multiple values.

<dia:DIA xmlns="urn:vpu:cain21-cat-capabilities"

 xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-

NS"

 xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <dia:Description xsi:type="CATCapabilitiesType"

id="video_transcoder_cat">

<CATClassName>es.vpu.cain21.cats.VideoTranscoderCA

T</CATClassName>

 <Platform>

 <ValueSet>

 <Value href="Windows XP">Windows</Value>

 <Value href="Linux">Linux</Value>

 <Value href="Mac OS X">Mac OS X</Value>

 </ValueSet>

 </Platform>

 <!-- Online MPEG conversion using the ffmpeg

library -->

 <ConversionCapability

xsi:type="ConversionCapabilityType"

id="online_mpeg_transcoder">

 <ContentDegradation>0</ContentDegradation>

 <ComputationalCost>1.0</ComputationalCost>

 <Preconditions>

 <URL>

 <AnyValue/>

 </URL>

 <Binding>

 <ValueSet>

 <Value href="urn:mpeg:mpeg21:2007:01-BBL-

NS:handler:HTTP">HTTP</Value>

 <Value href="urn:mpeg:mpeg21:2007:01-BBL-

NS:handler:FILE">FILE</Value>

 </ValueSet>

 </Binding>

 <Content>

 <ValueSet>

 <Value

href="urn:mpeg:mpeg7:cs:ContentCS:2001:2">Audiovis

ual</Value>

 <Value

href="urn:mpeg:mpeg7:cs:ContentCS:2001:4.2">Video<

/Value>

 </ValueSet>

 </Content>

 <FileFormat>

 ·············

 </FileFormat>

 <Bitrate>

 <RangeValueSet from="5000" to="1000000"/>

 </Bitrate>

 ···············

 </Preconditions>

 <Postconditions>

 ·················

 </Postconditions>

 </ConversionCapability>

 <!-- On Demand MP4 conversion using the ffmpeg

command -->

 <ConversionCapability

xsi:type="ConversionCapabilityType"

id="ondemand_mp4_transcoder">

 ···················

 ···················

 </ConversionCapability>

 </dia:Description>

</dia:DIA>

Listing 1: CAT Capabilities DI example

 The XML Schema of the CAT Capabilities description tool

that we propose is available in the file ccatc.xsd of the CAIN-

21 software. The CATCapabilitiesType represents a CAT. The

ConversionCapabilitiesType represents each conversion that

the CAT is capable of performing. Listing 1 shows a fragment

of one of the CAT Capabilities DIs fully available in the

CAIN-21 demo. The CAT comprises two

ConversionCapability elements named

online_mpeg_transcoder and ondemand_mp4_transcoder.

The Preconditions and Postconditions elements contain

information related to the media format that each conversion

accepts and produces. These properties are inspired by MPEG-

7 Part 5. Note that the properties can be single-valued or

multi-valued by means of the ValueSet element. The

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-15-

RangeValueSet element enables the description of ranges. The

AnyValue element represents a placeholder whenever the value

of the parameter must be provided, but every value is

acceptable.

2) Comparison with the ConversionLink

Subsection II.B describes that MPEG-21 Part 7 Amendment

1 has standardised the ConversionLink description tool. This

tool provides a means for linking steering description

parameters and conversion capabilities description.

ConversionLink uses the ConversionCapability element to

describe the adaptation capabilities.

The CATCapabilitiesType of CAIN-21 is defined as a

derivation by restriction of the DIADescriptionType of MPEG-

21. Therefore, the CATCapabilitiesType can be seen as a (non-

MPEG-21 standardised) DIA description tool.

More specifically, the ConversionCapabilityType of MPEG-

21 is a generic container that used the following type to enable

any description:

 <any namespace="##other"

processContents="lax" minOccurs="0"/>

The ConversionCapabilityType of CAIN-21 is defined as a

derivation by extension of this ConversionCapabilityType.

Therefore, the ConversionCapabilityType of CAIN-21 can be

seen as an instance of the generic ConversionCapabilityType

that MPEG-21 provides. In particular, CAIN-21 describes the

conversions by means of preconditions and postconditions.

This description model suits the automatic decision mechanism

of CAIN-21.

Authors such as [10] also use the ConversionCapability

element6 together with the ConversionLink. In this case, the

author makes use of RDF tuples to describe the adaptation

capabilities and its semantics. CAIN-21 instead uses

preconditions and postconditions that best suit its decision-

making mechanism.

D. Binding modes

Subsection II.E explained the Offline/On-demand/Online

adaptation modes. CAIN-21 supports all these modes.

Subsection II.E has highlighted the difference between

adaptation and delivery. Although CAIN-21 is focused on

adaptation, delivery is supported to a certain extend. Binding

modes have been introduced in CAIN-21 to support media

delivery. In particular, delivery can be envisioned as a type of

adaptation. The binding modes indicate the delivery

mechanism that the conversion uses to receive and transmit the

media (such as FILE, HTTP or RSTP). This work proposes to

use the mpeg21:Handler description tool of the Bitstream

Binding Language (BBL) [30]. The binding modes are used

with two purposes: (1) to transfer the media between CATs in

a sequence of CATs and (2) to transfer the media from the last

CAT in the sequence to the consumption terminal. TABLE

6 The author uses the name ConversionDescription to refer to the notion of

ConversionCapability.

shows the binding modes currently available in CAIN-21. The

INPROCESS binding mode allows efficient transfer of the

media resource between CATs.

In CAIN-21 each ConversionCapabilities element must

provide in its preconditions and postconditions the available

binding modes. For instance, in Listing 1, the first

ConversionCapabilities element supports FILE and HTTP in

its preconditions (i.e. in the input of the corresponding

conversion). The Terminal element of the Usage Environment

DI must also indicate the delivery modes that it supports to

receive media. Listing 3 below shows how the binding modes

of a terminal are provided into its terminal description. Listing

1 and Listing 3 show that the binding mode, of both the

online_mpeg_transcoder and the terminal, can take more that

one value. In these examples, both the conversion described in

Listing 1 and the terminal described in Listing 3 support the

FILE and HTTP binding modes.

The current release of CAIN-21 includes one CAT (named

HttpVideoStreamingCAT), which only purpose is to provide

HTTP video delivery. If necessary, the decision mechanism

automatically adds this CAT to the sequence of CATs.

Specifically, this CAT is added at the end of the sequence

when the last CAT of the sequence does not provide HTTP

binding mode in its postconditions (for instance, because the

CAT only provides FILE binding mode in its postconditions)

and the terminal binding mode is defined as HTTP only

capable.
TABLE I

 BINDING MODES PROPOSED BY CAIN-21

Binding mode Description

urn:mpeg:mpeg21:2007:01-

BBL-NS:handler:INPROCESS

In-process technique used to

transfer information between

CATs. In the case of CAIN-21,

objects loaded in memory use

the pull model to request data by

means of a memory buffer.

urn:mpeg:mpeg21:2007:01-

BBL-NS:handler:FILE

Can read/write files provided in

the URL. This is an appropriate

binding for OdA mode

urn:mpeg:mpeg21:2007:01-

BBL-NS:handler:TCP

Can read/write TCP sockets. The

IP+port are provided in the URL.

This is an appropriate binding

for OnA mode.

urn:mpeg:mpeg21:2007:01-

BBL-NS:handler:HTTP

Can read/write HTTP protocol.

The IP+port are provided in the

URL. This is an appropriate

binding for OnA mode.

urn:mpeg:mpeg21:2007:01-

BBL-NS:handler:RTSP

Can read/write RTSP protocol.

The IP+port are provided in the

URL. This is an appropriate

binding for OnA mode.

E. Properties DI

The Properties DI tool gathers all the information required

by the multimedia adaptation process following a declarative

approach. The main purpose of this tool is that changes in the

set of multimedia properties do not imply changes in the

-16-

underlying source code. Particularly, with the Properties DI

tool all the information is described consistently using so

called multimedia properties. These multimedia properties

include the Content DI, the Usage Environment DI and the

CAT Capabilities DI. Each property is represented as a label

with an associated XPath [8] expression.

1) Addressing mechanism

Even though the PM is still responsible for parsing the

documents and loading them in memory, the ADM does not

directly access these properties. In this way, changes in the

metadata do not imply changes in the underlying source code.

Instead, these changes imply only modifying the Properties

DI.

<dia:DIA xmlns="urn:vpu:cain21-properties-di"

 xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-

NS"

 xmlns:mpeg7="urn:mpeg:mpeg7:schema:2001"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance">

 <dia:Description xsi:type="PropertiesDIType">

 <DIProperties>

 <Property name="genre" required="false"

xpath="/Item/Descriptor/Statement/Mpeg7/Descriptio

nUnit/Genre/@href"/>

 </DIProperties>

 <ComponentProperties>

 <Property name="id" required="true"

xpath="/@id"/>

 <Property name="url" required="true"

xpath="/Resource/@ref"/>

 <Property name="mime_type" required="false"

xpath="/Resource/@mimeType"/>

 ··················

 <ComposedProperty name="visual_frame"

required="false">

 <Value

xpath="//Mpeg7/Description/MediaInformation/MediaP

rofile

//MediaFormat/VisualCoding/Frame/@width"/>

 <Value

xpath="//Mpeg7/Description/MediaInformation/MediaP

rofile

//MediaFormat/VisualCoding/Frame/@height"/>

 </ComposedProperty>

 </ComponentProperties>

 <CATProperties>

 <Property name="id" required="true"

xpath="/@id"/>

 <Property name="cat_class_name" required="true"

xpath="/CATClassName"/>

 ····················

 </CATProperties>

 <ConversionProperties>

 <Property name="id" required="true"

xpath="/@id"/>

 <Property name="content_degradation"

required="true"

 xpath="/ContentDegradation"/>

 <Property name="computational_cost"

required="true"

 xpath="/ComputationalCost"/>

 <!-- Input properties -->

 <Property name="pre_url" required="true"

xpath="/Preconditions/URL"/>

 <Property name="pre_binding" required="true"

xpath="/Preconditions/Binding"/>

 <Property name="pre_content" required="true"

xpath="/Preconditions/Content"/>

 ··············

 <!-- Output properties -->

 <Property name="post_url" required="true"

xpath="/Postconditions/URL"/>

 <Property name="post_binding" required="true"

xpath="/Postconditions/Binding"/>

 <Property name="post_content" required="true"

xpath="/Postconditions/Content"/>

 ·················

 </ConversionProperties>

 <UsageEnvProperties>

 <TerminalProperties>

 <Property name="id" required="true"

xpath="/@id"/>

 <Property name="binding" required="true"

xpath="/TerminalCapability[@type='cde:HandlerCapab

ilitiesType']

 /Handler/@handlerURI"/>

 ··········

 </TerminalProperties>

 <NetworkProperties>

 <Property name="id" required="true"

xpath="/@id"/>

 <Property name="max_capacity" required="false"

xpath="/NetworkCharacteristic/@maxCapacity"/>

 <Property name="min_guaranteed"

required="false"

xpath="/NetworkCharacteristic/@minGuaranteed"/>

 </NetworkProperties>

 <UserProperties>

 <Property name="id" required="true"

xpath="/@id"/>

 ··············

 <Property name="pref_focus_of_attention"

required="false"

xpath="/UserCharacteristic/ROI/@uri"/>

 </UserProperties>

 </UsageEnvProperties>

 </dia:Description>

</dia:DIA>

Listing 2: Properties DI example

The expression of each property points out to the part of the

DI where its values are located. XPath expressions are relative

to the document. Therefore, the Properties DI stores only the

XPath of the property. The document that contains these

properties is determined during the execution of the

adaptation. The Configuration DI (introduced in Subsection

IV.A) is used to identify these documents. Furthermore,

properties are only resolved on-demand. In this way,

properties that are never used are not extracted from de DIs.

Internally, CAIN-21 uses xpointer() [24] expressions to

reference both the document and the XML element or attribute

to be accessed. The standard Xalan processor [31] is used in

our work to gather all these properties.

The Properties DI schema that we propose is available in

the file cpr.xsd of the CAIN-21 software. The

PropertiesDIType is defined as a derivation by restriction of

the MPEG-21 standard DIADescriptionType. This type

includes four important elements that correspond to the five

groups of properties: DIProperties, ComponentProperties,

CATProperties, ConversionProperties and

UsageEnvProperties. Listing 2 shows the more relevant parts

of the current Properties DI of CAIN-21 (the whole document

is available in the file pr.xml of the CAIN-21 demo). For

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-17-

instance, in Listing 2 the ConversionProperties element

contains the property pre_url whose XPath expression is

“/Preconditions/URL”. On resolving this XPath expression in

Listing 1, AnyValue is obtained indicating that the conversion

accepts any value for this property. As another example, on

resolving the pre_binding property in Listing 2, the FILE and

HTTP binding modes are obtained from Listing 1.

2) Properties and relationships

Subsection IIII.A introduced the Semantic Web. Semantic

Web languages such as OWL allow explicitly representing and

storing concepts and their relationships in a semantic graph.

Software tools such as Protégé facilitate loading this graph

from disk to memory. Frequently, automatic-reasoning

techniques use this graph to search for relationships among the

values and to infer additional information.

In CAIN-21, the concepts are represented by means of

properties and the relationships are limited. Specifically,

relationships are just intended to assist the matching algorithm

developed in [17]. In this way, CAIN-21 uses a delimited

subset of the rich relationships that the Semantic Web

provides.

The Properties DI complies with the Keep It Short and

Simple (KISS) design principle. This principle recommends to

avoid unnecessary complexity and construct systems as simple

as possible, but no simpler. The main purpose of the

Properties DI is not information inference, but to elude

changes in the decision algorithm when the metadata under

consideration evolves. In contrast, depending on the reasoning

techniques, changes in the relationships of the semantic graph

imply changes in the underlying reasoning algorithms.

In a nutshell, the matching mechanism tests whether the

input of one CAT accepts the output of the previous CAT in

the sequence. The matching mechanism also tests whether the

terminal accepts the output of the last CAT. In order to

perform these tests, usually the simple properties-based

representation mechanism has demonstrated to be enough [17].

These tests demonstrated its suitability and also demonstrated

that the matching mechanism operates efficiently. However,

during the tests, we encountered that occasionally it is

convenient to consider more complicated relationships

between properties. For instance, to maintain the ratio in the

adapted media the width and height should be considered

together. In these cases, we use composed properties. Listing 2

shows an example of these composed properties. The

visual_frame property uses the ComposedProperty element to

gather the width and height elemental values. In the

representation schema of CAIN-21, these elemental values can

be represented by means of ranges or as a placeholder

accepting any value.

F. Extensions to the UED

In particular, this document has identified the following

handicaps in the current UED:

1. The mpeg21:TerminalType does not include any

reference to the modalities of the content that the terminal

consumes (images, video, audiovisual, audio, etc). The

mpeg7:Content description serves this purpose by the

mpeg7:ContentCS classification scheme

2. The terminal does not provide any description of the

binding modes, i.e., the delivery mechanism (such as HTTP or

RTSP) used to consume content as described in Subsection

IV.D.

3. The standard MPEG-21 Part 7 UED tools do not specify

whether the properties of the terminal are mandatory or

optional. For instance, if the terminal is defined using the

mpeg21:AudioCapabilitiesType, does it mean that the adapted

media must include audio? Or does it mean that this audio

format could be consumed if present?

These semantic gaps include both properties that can be

inferred and properties that cannot be inferred (ambiguities).

The first gap semantic can be addressed by inference [32] and

the other two gaps by extending the current

mpeg21:TerminalType. More specifically, the first gap can be

addressed by inferring the media content (image, video,

audiovisual, audio) from the

mpeg21:TransportCapabilitiesType (illustrated in Listing 3).

To demonstrate how to address the other two gaps, Listing 3

shows a portion of the description of the terminal with

id=“iphone” from the CAIN-21 demo. The extensions that

this subsection discussed are marked in bold. The XML

Schema with these changes is publicly available in the file

cde.xsd of the CAIN-21 software.

<Terminal id="iphone" xsi:type="cde:TerminalType">

 <TerminalCapability

xsi:type="cde:HandlerCapabilitiesType">

 <Handler handlerURI="urn:mpeg:mpeg21:2007:01-

BBL-NS:handler:FILE"/>

 <Handler handlerURI="urn:mpeg:mpeg21:2007:01-

BBL-NS:handler:HTTP"/>

 </TerminalCapability>

 <TerminalCapability

xsi:type="cde:CodecCapabilitiesType">

 <cde:Decoding

xsi:type="cde:TransportCapabilitiesType">

 <cde:Format

href="urn:vpu:cs:FileFormatCS:2009:3gpp">

 <mpeg7:Name xml:lang="en">

 3GPP file format

 </mpeg7:Name>

 </cde:Format>

 </cde:Decoding>

 <cde:Decoding

xsi:type="cde:VideoCapabilitiesType">

 <cde:Format

href="urn:vpu:cs:VisualCodingFormatCS:2007:1">

 <mpeg7:Name xml:lang="en">

 H.264 Baseline Profile @ Level 1.1

 </mpeg7:Name>

 </cde:Format>

 <cde:CodecParameter

xsi:type="CodecParameterBitRateType">

 <BitRate >32000</BitRate>

 </cde:CodecParameter>

 </cde:Decoding>

 <cde:Decoding

xsi:type="cde:AudioCapabilitiesType"

optional="true">

 <cde:Format

href="urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001:4

.3.1">

 <mpeg7:Name xml:lang="en">

 MPEG-2 Audio AAC Low Complexity Profile

 </mpeg7:Name>

-18-

 </cde:Format>

 <cde:CodecParameter

xsi:type="CodecParameterBitRateType">

 <BitRate>7950</BitRate>

 </cde:CodecParameter>

 </cde:Decoding>

 </TerminalCapability>

 ·····················

</Terminal>

Listing 3: Extended mpeg21:TerminalType

The proposed extensions to the mpeg21:TerminalType are:

1. Representing the binding modes of the terminal in the

cde:HandlerCapabilitiesType description tool. This element

makes reference to the mpeg21:Handler description tool.

shows how to describe that the iPhone terminal supports the

FILE and HTTP binding modes.

2. Mandatory and optional constrains are instances of the

hard and soft constraints model developed in [17]. To provide

this description, CAIN-21 extends the mpeg21:TerminalType

with the optional attribute. Listing 3 shows how to signal that

the audio stream is optional using the optional attribute in the

cde:AudioCapabilitiesType. If this attribute is absent, CAIN-

21 considers the terminal description as a mandatory

constraint.

V. TESTS AND VALIDATION

The CAIN-21 demo, publicly available at

http://cain21.sourceforge.net, provides several tests

demonstrating the multimedia adaptation approach of this

paper. This section focuses on demonstrating and validating

the extensions to the MPEG-21 standard proposed in Section

IV.

 Subsection III.A described the DI level adaptation

interface. Both operations of this interface – i.e., transform()

and addVariation() – have been used in the tests. In addition,

to cover a wide range of multimedia adaptations, both images

and videos have been selected for the tests reported in this

paper. CAIN-21 can also convert images to video through the

Image2VideoCAT. Its image_2_video conversion has also

been covered in the tests.

A. Transforming an image to an small video terminal

Test 1 illustrates how a Content DI with an image (named

photo.xml) is adapted to the id=“iphone” video terminal

(shown in Listing 3). The full description of these elements is

available in the CAIN-21 demo. The transform() software

interface receives a Configuration DI (described in Subsection

IV.A) to indicate the target terminal. The PM of CAIN-21

(described in Subsection III.B) uses the Properties DI to

gather the properties of the Content DI, CAT Capabilities DIs

and Usage Environment DI. After that, the ADM (introduced

in Subsection III.B) produces the following sequence of

conversions initial image_transcoder image_2_video

ondemand_video_transcoder goal. In this sequence, initial

represents the properties of the original Content DI. The

Preconditions and Postconditions of image_transcoder,

image_2_video and ondemand_video_transcoder are

described in their corresponding ConversionCapabilities

elements as explained in Subsection IV.C. Lastly, goal

represents the properties adapted content. The

image_transcoder conversion transcodes the image format and

size to the preconditions of the image_2_video conversion

(i.e., JPEG image format and 3:4 aspect ratio). The

image_2_video conversion accepts only JPEG images and

produces only MPEG-2 video. The

ondemand_video_transcoder (whose conversion capabilities

appear in Listing 1) transcodes the MPEG-2 video to the

constraints of the terminal (3GPP according to Listing 3). In

this Test 1, the ADM has selected the FILE binding mode the

conversions steps. This happened because all the conversions

provide this transfer mechanism in their Preconditions and

Postconditions description tools.

If we change the terminal of Test 1 from “iphone” to

“http_nokia_n95”, we have the didactic Test 2. This test fully

demonstrates the usefulness of the binding modes. In Test 2,

CAIN-21 produces a sequence with four conversions initial

image_transcoder image_2_video

ondemand_video_transdoder http_delivering goal.

Specifically, CAIN-21 has added to the end of the sequence

the http_delivering conversion to change the binding property

from FILE to HTTP. In Test 1 the “iphone” terminal

supported the FILE delivery mechanism (see Listing 3), which

corresponds to the binding property at the output of

ondemand_video_transcoder. Therefore CAIN-21 did not add

the http_deliveding conversion at the end of the sequence.

However, in Test 2, the “http_nokia_n95” terminal only

supports the HTTP binding mode, and therefore CAIN-21 has

added the http_delivering conversion at the end of the

sequence. This conversion has the FILE binding mode in its

preconditions and the HTTP binding mode in its

postconditions: this indicates that the purpose of this tool is to

transfer the input file using the HTTP standard protocol.

B. Summarizing variations of video news items

Test 3 summarizes and adapts a Content DI containing a

news item to three different terminals [33]. Listing 4 shows the

original Content DI to be adapted.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

 xmlns:cdi="urn:vpu:cain21-di"

 >

 <Item xsi:type="cdi:ItemType">

 <!-- Classification -->

 <Descriptor>

 <Statement mimeType="text/xml">

 <Mpeg7 xmlns="urn:mpeg:mpeg7:schema:2004">

 <DescriptionUnit xsi:type="ClassificationType">

 <Genre

href="urn:mpeg:mpeg7:cs:ContentCS:2001:1.1.13">

 <Name xml:lang="en">Natural disasters</Name>

 </Genre>

 <Genre

href="urn:mpeg:mpeg7:cs:ContentCS:2001:1.5.1">

 <Name xml:lang="en">Political</Name>

 </Genre>

 </DescriptionUnit>

 </Mpeg7>

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-19-

 </Statement>

 </Descriptor>

 <!-- Original content -->

 <Component xsi:type="cdi:VideoComponentType"

id="original">

 <Descriptor xsi:type="cdi:Mpeg7DescriptorType">

 <!-- MPEG-7 MediaDescriptionType describing the

resource -->

 ················

 </Description>

 <Resource mimeType="video/mpeg"

ref="../mesh/didl/flood2video.mpg"/>

 </Component>

 </Item>

</DIDL>

Listing 4: Original DI to be summarized and adapted in Test 3

The MPEG-7 ClassificationType description type indicates

that the news item contains natural disaster and political

content. The video is stored in a Component element with

id=“original”. This Component contains and MPEG-7

MediaDescriptionType description of the Resource element.

The original video is MPEG-1 video and has a resolution of

720x576. This video is summarized according to the methods

explained in [33]. Subsequently, the DI is adapted to three

terminals. The terminals for the adaptation are all MPEG-2

terminals and have, respectively, screen sizes of 720x576,

352x288 and 176x144. In Test 2, the addVariation() operation

is used to create the adapted videos in additional Component

elements of the Content DI. Listing 5 shows the adapted

Content DI with four Component elements: the original video

and three summarized and adapted variations. The MPEG-7

VariationDescriptionType description type indicates that the

original video (with id=“original”) has three variations in the

Component elements with IDs “big-sum”, “medium-sum” and

“small-sum”.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

 xmlns:cdi="urn:vpu:cain21-di"

 xmlns:mpeg7="urn:mpeg:mpeg7:schema:2004">

 <Item xsi:type="cdi:ItemType">

 <!-- Classification -->

 ························

 <!-- Original content -->

 <Component xsi:type="cdi:VideoComponentType"

id="original">

 ··········

 <Descriptor xsi:type="VariationDescriptionType">

 <VariationSet>

 <Source xsi:type="AudioVisualType">

 <AudioVisual>

 <MediaLocator>

 <MediaUri>#original</MediaUri>

 </MediaLocator>

 </AudioVisual>

 </Source>

 <Variation priority="1">

 <Content xsi:type="AudioVisualType">

 <AudioVisual>

 <MediaLocator>

 <MediaUri>#big-sum</MediaUri>

 </MediaLocator>

 </AudioVisual>

 </Content>

 <VariationRelationship>

 summarization

 </VariationRelationship>

 </Variation>

 <Variation priority="2">

 <Content xsi:type="AudioVisualType">

 <AudioVisual>

 <MediaLocator>

 <MediaUri>#medium-sum</MediaUri>

 </MediaLocator>

 </AudioVisual>

 </Content>

 <VariationRelationship>

 summarization

 </VariationRelationship>

 </Variation>

 <Variation priority="3">

 <Content xsi:type="AudioVisualType">

 <AudioVisual>

 <MediaLocator>

 <MediaUri>#small-sum</MediaUri>

 </MediaLocator>

 </AudioVisual>

 </Content>

 <VariationRelationship>

 summarization

 </VariationRelationship>

 </Variation>

 </VariationSet>

 </Descriptor>

 ···············

 <Resource mimeType="video/mpeg"

ref="../mesh/didl/flood2video.mpg"/>

 </Component>

 <!-- Big size summarized content -->

 <Component xsi:type="cdi:VideoComponentType"

id="big-sum">

 ·················

 </Component>

 <!-- Medium size summarized content -->

 <Component

xsi:type="cdi:VideoComponentType"id="medium-sum">

 </Component>

 <!-- Small size summarized content -->

 <Component xsi:type="cdi:VideoComponentType"

id="small-sum">

 ···········

</Component>

 </Item>

</DIDL>

Listing 5: Summarized and adapted DI in Test 3

Test 3 uses three Configuration DIs. These Configuration

DIs use the ARC descriptions (described in Subsection IV.B)

to request the adaptation to three terminals respectively

labelled as “720x576”, “352x288” and “176x144” in the

Usage Environment DI. For Test 3, we needed to create a

CAT named RawVideoCombinerCAT. Its CAT Capabilities

appear in the file raw_video_combiner_cat.xml of the CAIN-

21 demo. This CAT was necessary to retrieve the summarized

video from the summarization module (further explained in

[33]) through two TCP sockets: one for raw WAV audio and

one for RAW video. To this end, we created an additional

binding mode (see Subsection IV.D) labelled as

urn:mpeg:mpeg21:2007:01-BBL-NS:handler:TCP.The three

terminals in Test 3 were defined with the standard HTTP

binding mode in TABLE . During the adaptation, the ADM

produced a sequence with three conversions: initial

raw_video_combiner online_video_transcoder

http_delivering goal.

C. Extensions demonstrated in the tests

To recapitulate, justify and validate the extensions to the

-20-

MPEG-21 schema that this paper proposes the following

conclusions are offered:

1. The proposes description schema enables the description

of multiple terminals respectively labelled in the tests of this

section as “iphone”, “http_nokia_n95”, “720x576”,

“352x288” and “176x144”. To indicate the target terminal of

the adaptation this information has to be provided. As MPEG-

21 does not define a description tool for this purpose,

Subsection IV.B has proposed this description tool.

2. To enable automatic adaptation decision, the inputs and

outputs of the conversion tools have to be provided.

Subsection IV.C proposed the CAT Capabilities description

tools. The feasible inputs and output properties are defined

using the Preconditions and Postconditions elements.

3. For automatic decision, it is also necessary to know how

the media is going to be transferred to both the next CAT and

the target terminal. This justifies the introduction of the

binding mode in the description schema.

4. The modality of the content appears in the

mpeg7:Content description tool. However, this information is

not provided by the mpeg21:TerminalType description type.

During the decision process the modality of the content that

the terminal accepts has to be determined. The inference rule

described in Subsection IV.F can be used in this case.

Specifically, from the mpeg21:TransportCapabilitiesType

description tool of Listing 3 it can be inferred that the content

has to be visual or audiovisual. See [32] for a further

explanation of this mechanism.

5. In Test 2 the decision process needs to know the binding

mode to identify that the http_delivering conversion has to be

added to the sequence. This information removes ambiguity

and validates the first extension in Subsection IV.F.

6. Before adding the optional attribute to the

mpeg21:AudioCapabilitiesType description (extension 2 in

Subsection IV.F), CAIN-21 did not encounter a sequence for

Test 1 and Test 2. This happened because the output of the

image_2_video conversion did not contain this information.

This problem has been further described in [32]. Labelling the

audio as optional (see Listing 3) allows for ignoring the audio

properties during the computation of the sequence.

VI. MULTIMEDIA ADAPTATION ENGINES COMPARISON

This section provides a comparative review of six

multimedia adaptation engines, which operate in the MPEG-21

framework: ConversionLink [10], koMMa [15], BSD [12],

DCAF [20] NinSuna [21] and CAIN-21. These engines have

been introduced in Subsection II.D. TABLE shows the year of

publication that this paper is analyzing.

A. Aspects to compare

The comparison based on six aspects, namely:

1. The automatic decision-making method that the engine

implements.

2. Whether the engine supports multi-step adaptation.

3. Whether the engine provides a complete-solution, i.e.,

finds all the solutions.

4. The extensibility mechanism (if any).

5. The multimedia content that the engine is prepared to

adapt.

6. The semantic adaptations that the engine considers.

TABLE II

 SUMMARY OF COMPARATIVE OF MULTIMEDIA ADAPTATION ENGINES

 ConversionLink koMMa BSD DCAF NinSuna CAIN-21

Year 2005 2007 2008 2008 2010 2013

Decision-

making

method

Ad-hoc Knowledge-

based

Quality-

based

Quality-

based

Quality-

based

Knowledge-

based

+ Quality-

based

Multi-step No Yes Yes No No Yes

Complete

solutions

Unspecified No Ranking Ranking Unspecified Knowledge-

based

+ Ranking

Extensibilit

y

mechanism

Yes Yes No No Yes Yes

Multimedia

content

Images + Video

+ Audio

Image

+ Video

Scalable

content

General

video

Scalable

content

Images +

Video +

Audio

Semantic

adaptation

Scene

adaptation

OWL

description

gBSD

+ IOPins

gBSD

+ IOPins

RDF +

gBSD

+ SOIs

ROI

Subsection II.C divided automatic decision-making methods

into quality-based methods and knowledge-based methods.

koMMa and CAIN-21 rely on knowledge-based methods,

whereas BSD, DCAF and NinSuna rely on quality-based

methods. ConversionLink is a generic description engine that

does not specify the algorithms used to make the adaptation

decisions. BSD and DCAF engines use the notion of Pareto

optimality. CAIN-21 also uses quality-based decisions during

a second step (see, [18] for a further discussion on how CAIN-

21 implements these quality-based decisions). Whereas BSD,

Ninsuna and CAIN-21 rely on classical multi-attribute

optimisation methods, DCAF exploits genetic algorithms to

compute this optimization.

Section I introduced the advantages that multi-step

adaptation provides. These advantages are frequently studied

in knowledge-based methods. The koMMa and CAIN-21

adaptation engines use these methods. BSD is mainly devoted

to performing the adaptation of the scalable resource in one

step. Nonetheless, the authors have also studied the problem of

distributed adaptation, which corresponds to the idea of

multistep adaptation in different nodes.

In reference to completeness, quality-based methods usually

obtain a complete solution, i.e., all the feasible solutions are

obtained and ranked: this is the case of BSD, DCAF and

CAIN-21. More specifically, these engines create a ranking

among the available solutions. Well-known quality metrics

such as PSNR or VQM [34] are used to create this ranking.

Regarding the knowledge-based methods, koMMa only

extracts one solution. CAIN-21 analyses all of them using both

the knowledge-based and quality-based decision methods.

NinSuna and ConversionLink do not specify the completeness

of their decisions.

The idea of extensibility appears in ConversionLink,

koMMa, NinSuna and CAIN-21. Both the ConversionLink and

the CATCapabilities description tools include the standard

ConversionCapabilities [9] description tool. The differences

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-21-

between these descriptions were discussed in Subsection IV.C.

BSD and DCAF do not examine their own extensibility.

NinSuna discusses its extensibility regarding its format

independence.

In reference to the supported media, BSD and NinSuna are

particularly effective dealing with scalable media, while

DCAF deals with general video resources. ConversionLink,

koMMa and CAIN-21 are intended to deal with a wider range

of media resources. Specifically, ConversionLink and CAIN-

21 can manage images, audio and video, whereas koMMa

provides adaptation tests involving images and video. The

scalable content adaptation implemented in BSD and DCAF is

one of the adaptations that CAIN-21 incorporates. Moreover,

[18] discusses how scalable video adaptation is carried out

inside a CAT called the SVCCAT. The scalable content

adaptation corresponds to to the idea of resource conversion in

the case of ConversionLink.

In reference to semantic adaptations, ConversionLink allows

scene level adaptation. It addresses the question of semantic

adaptation of documents based on temporal, spatial and

semantic relationships between the media objects. koMMa

relies on Semantic web Services to describe its adaptation

capabilities and to identify the sequence of conversions. BSD

and DCAF use the gBSD [3] and the AdaptationQoS with

IOPins [3] description tools. IOPins are linked to semantics

annotating the video stream on a semantic level. NinSuna uses

RDF to describe semantic relationships. It also uses the gBSD

description tools to provide semantic adaptation for the

selection of Scenes Of Interest (SOIs) as well as for frame-rate

reduction. CAIN-21 makes use of Regions of Interest (ROIs)

inside some CATs such as the Image2VideoCAT. Tests

involving semantic adaptation in CAIN-21 have been reported

to [19].

B. Adaptation approaches comparison

This section describes the reasoning behind the different

approaches chosen for the adaptations engines described

above.

In the design of ConversionLink it can be observed an effort

to create a general MPEG-21 description of multimedia

adaptation, but without paying attention to the underlying

adaptation algorithms. Several adaptations are described, but

they are ad-hoc adaptations of a specific media item, that is,

the decision and adaptation methods do not generalize to make

them reusable for other media contents or formats without

modifying the underlying implementation.

The major contribution of koMMa is to demonstrate how

Web Services are able to represent and calculate multimedia

adaptation sequences. koMMa studies in depth the semantic

description and planning of the sequence, but defers the study

and exploitation of the signal level features of the media to be

adapted.

The reasoning behind quality-based methods (i.e., BSD,

DCAF and NinSuma) is to find the parameters that maximize

the quality or utility of the adaptation. These parameters exist

or are applicable only to specific media formats (e.g., scalable

video), and hence these methods do not aim to accomplish the

adaptation of the widest possible range of multimedia formats.

Conversely, knowledge-based methods (such as koMMa or the

first phase of CAIN-21) focus on the reusability of the

adaptation algorithms as a mean to archive the widest possible

range of adaptations. With this purpose, knowledge-based

methods propose the use of pluggable adaptation tools, and

elaborate a decision method that, without human intervention,

finds the adaptation tools and corresponding parameters to

accomplish each adaptation scenario.

CAIN-21 contributes to the previous ideas by proposing the

combination of knowledge-based and quality-based methods in

two steps. Firstly, a descriptions-based method that finds all

the feasible adaptations, secondly the CATs use media features

to select the parameters that maximize the quality or utility of

the adaptation.

VII. CONTRIBUTIONS AND CONCLUSIONS

The objective of the Semantic Web is to represent

knowledge in a format that can be automatically processed

without human intervention. This paper contributes to this

objective by introducing the idea of implied and explicit

ontology, envisioning MPEG-21 as a implied ontology, and

demonstrating how this (pseudo)-ontology is enough to

accomplish multimedia adaptation decision-making

automatically (i.e., without human intervention in the decision

process).

This paper has explained CAIN-21, its extensibility

mechanism and the infrastructure to perform automatic

adaptation decisions. So, assuming that enough CATs are

available, CAIN-21 is capable of managing all content that can

be represented as a DI.

As said, CAIN-21 embraces MPEG-21 and shows its good

level of expressiveness, as most of new descriptions for

concepts and relationships can be represented with this

standard. However, this paper has identified and discussed

several handicaps in the MPEG-21 description capabilities. As

discussed in Section 4, extensions were provided to solve these

handicaps. In particular, the paper identifies gaps in the

MPEG-21 schema to represent the UED, in the binding modes,

in the ConversionCapabilities to represent preconditions and

postconditions, and in the mpeg7:Content description tool.

Another important unique aspect of CAIN-21 is that

semantic and quality-based adaptations have been put apart

from the knowledge-based decision mechanism and transferred

to the CATs. Therefore, our proposal for the knowledge-based

decision method makes the adaptation engine independent of

the semantics in the content to be adapted. Specifically, the

independence is achieved by making decisions according to

the media format. Subsequently, quality-based and semantic

adaptation for particular content (e.g. soccer, news items) can

be integrated inside the CATs. As can be seen in TABLE ,

CAIN-21 combines these two major decision-making methods

and integrates a complete algorithm, i.e., an algorithm that

identifies all the feasible adaptations that produce content

-22-

satisfying the usage environment constraints.

The paper also includes the reasoning behind and

comparison of the different multimedia adaptation decision

approaches.

REFERENCES

[1] J. Lachner, A. Lorenz, B. Reiterer, A. Zimmermann, H. Hellwagner.

"Challenges Toward User-Centric Multimedia". Proceedings of Second

International Workshop on Semantic Media Adaptation and

Personalization (SMAP 2007), pp 159-164, London, UK, Dec. 2007.

[2] F. Pereira, I. Burnett. "Universal multimedia experiences for tomorrow".

IEEE Signal Processing Magazine, 20(2):63-73, Mar. 2003.

[3] I. Burnett, F. Pereira, R. V. de Walle, R. Koenen (editors). “The MPEG-

21 Book”. John Wiley and Sons, Apr. 2006.

[4] Authors. “CAIN-21: An extensible and metadata-driven multimedia

adaptation engine in the MPEG-21 framework”, Lectures Notes in

Computer Science, Springer Verlag, vol. 5887, pp. 114-125, 4th

International Conference on Semantic and Digital Media Technologies

(SAMT 2009), Dec. 2009.

[5] N. Shadbolt, T. Berners-Lee, W. Hall, “The Semantic Web Revisited”.

IEEE Intelligent Systems. 21(3):96-101, May 2006.

[6] B. S. Manjunath, P. Salembier, T. Sikora (eds.). "Introduction to

MPEG-7 Multimedia Con-tent Description Interface". Wiley & Sons,

Jun. 2002.

[7] WWW Consortium (W3C). "Multimedia Vocabularies on the Semantic

Web". http://www.w3.org/2005/Incubator/mmsem/, Jul. 2007 (last

verified Jun. 2012).

[8] WWW Consortium (W3C). “XML Path Language (XPath) Version

1.0”, Nov. 1999.

[9] ISO/IEC 21000-7:2005. ” Information technology - Multimedia

framework (MPEG-21) - Part 7: Digital Item Adaptation,

AMENDMENT 1: DIA Conversions and Permissions”, Jan. 2005.

[10] M. Kimiaei. “Adaptation de Contenu Multimédia avec MPEG-21:

Conversion de Ressources et Adaptation Sémantique de Scènes”. PhD.

Thesis. Ecole Nationale Supérieure des Télé-communications, Jun 2005.

[11] D. Mukherjee, E. Delfosse, J.G. Kim, Y. Wang. “Optimal adaptation

decision-taking for teminal and network quality-of-service”, IEEE

Transactions on Multimedia vol. 7(3), pp. 454-462, Jun. 2005.

[12] C. Timmerer, “Generic Adaptation of Scalable Multimedia Resources”.

Verlag Dr. Muller, May 2008.

[13] M.C. Angelides, and A.A. Sofokleous, A game approach to optimization

of band-width allocation using MPEG-7 and MPEG-21, Multimedia

Tools and Applications, pp. 1-23, DOI:10.1007/s11042-011-0981-0.

Mar. 2012.

[14] B. Girma, L. Brunie, J.M. Pierson. “Planning-Based Multimedia

Adaptation Services Composition for Pervasive Computing”.

Proceedings of 2nd International Conference on Signal-Image

Technology Internet based Systems (SITIS 2006) pp. 132.143,

Hammamet, Tunisia, Dec. 2006.

[15] D. Jannach, K. Leopold. "Knowledge-based multimedia adaptation for

ubiquitous multimedia consumption", Journal of Network and

Computer Applications, 30(3):958-982, Aug. 2007.

[16] Feng X., Tang R., Zhai Y., Feng Y., Hong B., "An MPEG-21-driven

multimedia adaptation decision-taking engine based on constraint

satisfaction problem", Proc. SPIE 8878, Fifth International Conference

on Digital Image Processing (ICDIP), 2013.

[17] Authors, Bounded non-deterministic planning for multimedia

adaptation, Applied Intelligence, Springer, vol. 36:1, pp. 29-60 Mar.

2012.

[18] Authors. Improving Scalable Video Adaptation in a Knowledge-Based

Framework. Proceedings of the 11th International Workshop on Image

Analysis for Multimedia Interactive Services (WIAMIS 2010), ISBN

978-1-4244-7848-4, Desenzano, Italy, Apr. 2010.

[19] Authors. "Automatic adaptation decision making using an image to

video adaptation tool in the MPEG-21 framework". Proceedings of the

International Workshop on Image Analysis for Multimedia Interactive

Services (WIAMIS 2009), pp. 222-225, London, UK, May 2009.

[20] A. A. Sofokleous, M. C. Angelides, “DCAF: An MPEG-21 Dynamic

Content Adaptation Framework”. Multimedia Tools and Applications,

40(2):151-182, Nov. 2008.

[21] D. Van Deursen, W. Van Lancker, W. De Neve, T. Paridaens, E.

Mannens, R. Van de Walle, “NinSuna: a fully integrated platform for

format-independent multimedia content adaptation and delivery using

Semantic Web technologies”. Multimedia Tools and Applications,

46(2):371-398, Jan. 2010.

[22] J. Lee, “Scalable continuous media streaming systems”, Ed. Wiley. Jul

2005.

[23] P. van Beek, J.R. Smith, T. Ebrahimi, T. Suzuki, J. Askelof. "Metadata-

driven multimedia access". IEEE Signal Processing Magazine, 20(2):40-

52, Mar 2003.

[24] WWW Consortium (W3C), “XPointer xpointer() Scheme”,

http://www.w3.org/TR/xptr-xpointer/, Dec. 2002 (last verified Jun.

2012).

[25] J. Bormans, J. Gelissen, A. Perkis, “MPEG-21: The 21st century

multimedia framework”. IEEE Signal Processing Magazine, 20(2):53-

62, Mar. 2003.

[26] S. De Zutter, R. Van de Walle, "Enhanced Quality of Experience in

Heterogeneous Environments from a Content Author's Perspective".

Proceedings of Sixth FirW PhD Symposium, Ghent University, Nov.

2005.

[27] [M. Einhoff, .J. Casademont, F. Perdrix, S. Noll. “ELIN: A MPEG

Related News Framework”. Proceedings of the 47th International

Symposium (ELMAR 2005), pp. 139-140, Zadar, Croatia, Jun. 2005.

[28] Authors. Towards a fully MPEG-21 compliant adaptation engine:

complementary description tools and architectural models. Lectures

Notes in Computer Science, Springer Verlag, vol. 5811, pp. 155-169,

6th International Workshop on Adaptive Multimedia Retrieval (AMR

2008), Jun. 2008.

[29] L. Rong, I. Burnett, “Facilitating Universal Multimedia Adaptation

(UMA) in a Heterogeneous Peer-to-Peer Net-work”. Second

International Conference on Automated Production of Cross Media

Content for Multi-Channel Distribution, 2006. AXMEDIS apos;06. pp.

105-109. Dec. 2006.

[30] ISO/IEC 21000-18:2008 FDAM 1“Information technology - Multimedia

framework (MPEG-21) - Part 18: Digital Item Streaming”, Mar. 2008.

[31] Apache Java Xalan XSLT Processor. Available online at

http://xml.apache.org/xalan-j/ (last verified Jun. 2012).

[32] Authors. Automatic adaptation decision making in the MPEG-21

framework: mechanisms and complementary description tools.

Proceedings of the 11th Inter-national Workshop on Image Analysis for

Multimedia Interactive Services (WIAMIS 2010), ISBN 978-1-4244-

7848-4, 12-14 April, Desenzano, Italy, Apr. 2010.

[33] Authors. Instant Customized Summaries Streaming: a service for

immediate awareness of new video content. Lectures Notes in Computer

Science, Springer Verlag, vol. 6535, pp. 24-34, (ISBN 978-3-642-

18449-9), 7th International Workshop on Adaptive Multimedia

Retrieval (AMR 2009), Madrid, Spain, Sep. 2009.

[34] C. Timmerer, V.H. Ortega, J.M. González, A. León, “Measuring quality

of experience for MPEG-21-based cross-layer multimedia content

adaptation”, ISBN: 978-1-4244-1967-8, Proceedings of the 2008

IEEE/ACS International Conference on Computer Systems and

Applications (AICCSA 2008), pp. 969-974, Doha, Qatar, Apr. 2008.

Fernando López works as a post-doctoral senior

researcher and assistant lecturer at the Universidad

Internacional de la Rioja (UNIR). He is focused on

informal learning with mobile devices and specializes in

technology-enhanced learning, mobile applications,

multimedia, programming languages, research and

innovation. Before joining UNIR, he worked for the

Universidad Autónoma de Madrid (UAM) as a post-doctoral researcher in

European research projects. He obtained his EU-wide recognized PhD degree

in Computer Science and Telecommunications in 2010 at the Video

Processing and Understanding Lab (VPU Lab) of the UAM, a period during

which he worked in 2 European research projects related to his thesis. He has

published two journal papers, ten papers in international conferences and

workshops, one book and a book chapter. In addition, he worked as assistant

professor in the Knowledge Engineering and Multimedia laboratories in the

UAM. His current research interests lie in the areas of mobile applications,

technology enhanced learning and entrepreneurship. .

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 4.

-23-

José M. Martínez José M. Martínez received the

Ingeniero de Telecomunicación degree (six years

engineering program) in 1991 and the Doctor Ingeniero de

Telecomunicación degree (PhD in Communications) in

1998, both from the E.T.S. Ingenieros de

Telecomunicación of the Universidad Politécnica de

Madrid. He is Associate Professor at the Escuela

Politécnica Superior of the Universidad Autónoma de Madrid. His

professional interests cover different aspects of advanced video surveillance

systems and multimedia information systems. Besides his participation in

several Spanish national projects (both with public and private funding), he

has been actively involved in European projects dealing with multimedia

information systems applied to the cultural heritage (e.g., RACE 1078 EMN,

European Museum Network; RACE 2043 RAMA, Remote Access to

Museums Archives; ICT-PSP-FP7-250527 ASSETS, Advanced Search

Services and Enhanced Technological Solutions for the Europeana Digital

Library), education (e.g., ET 1024 TRENDS, Training Educators Through

Networks and Distributed Systems), multimedia archives (e.g., ACTS 361

HYPERMEDIA, Continuous Audiovisual Digital Market in Europe) and

semantic multimedia networked systems (e.g., IST FP6-001765 acemedia,

IST FP6-027685 Mesh). He is author and co-author of more than 100 papers

in international journals and conferences, and co-author of the first book

about the MPEG-7 Standard published 2002.

He has acted as auditor and reviewer for the EC for projects of the

frameworks program for research in Information Society and Technology

(IST). He has acted as reviewer for journals and conferences, and has been

Technical Co-chair of the International Workshop VLBV’03, Special

Sessions Chair of the International Conference SAMT 2006, Special Sessions

Chair of the 9th International Workshop on Image Analysis for Multimedia

Interactive Services WIAMIS 2008, Program co-chair of the 7th International

Workshop on Content-based Multimedia Indexing CBMI 2009 and General

chair of the 9th International Workshop on Content-based Multimedia

Indexing CBMI 2011.

Narciso García received the Ingeniero de

Telecomunicación degree (five years engineering program)

in 1976 (Spanish National Graduation Award) and the

Doctor Ingeniero de Telecomunicación degree (PhD in

Communications) in 1983 (Doctoral Graduation Award),

both from the Universidad Politécnica de Madrid (UPM),

Madrid, Spain. Since 1977 he has been a member of the

faculty of the UPM, where he is currently a Professor of Signal Theory and

Communications.

He leads the Grupo de Tratamiento de Imágenes (Image Processing Group) of

the Universidad Politécnica de Madrid. He has been actively involved in

Spanish and European research projects, serving also as evaluator, reviewer,

auditor, and observer of several research and development programmes of the

European Union. He was a co-writer of the EBU proposal, base of the ITU

standard for digital transmission of TV at 34-45 Mb/s (ITU-T J.81). He has

been Area Coordinator of the Spanish Evaluation Agency (ANEP) from 1990

to 1992 and he is General Coordinator of the Spanish Commission for the

Evaluation of the Research Activity (CNEAI) since 2011.

He was awarded the Junior and Senior Research Awards of the Universidad

Politécnica de Madrid in 1987 and 1994, respectively. His professional and

research interests are in the areas of digital image and video compression and

of computer vision.

