
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 7

-33-

Abstract — In this work we introduce a simple client-server

system architecture and algorithms for ubiquitous live video

and VOD service support. The main features of the system are:

efficient usage of network resources, emphasis on user

personalization, and ease of implementation. The system

supports many continuous service requirements such as QoS

provision, user mobility between networks and between

different communication devices, and simultaneous usage of a

device by a number of users.

Keywords — Seamless Content Delivery, Ubiquitous

Multimedia Service, Personal Multimedia Delivery, Live Video

Transmission, VOD Transmission.

I. INTRODUCTION

new generation of distributed services ranging from

entertainment services such as live video streaming,

video on demand and on-line gaming, to life- saving

applications such as medical services and monitoring, are

being deployed in heterogeneous and ubiquitous

environments. To be accepted by both users and network

operators, these ubiquitous services must deliver continuous

service, as well as adaptive and satisfactory Quality-of-

Service with a minimum overhead of network resources.

Providing ubiquitous services entails a number of complex

issues, such as supporting the required QoS during a session,

seamless handovers between different radio access

technologies (RATs), supporting user mobility, etc.

In this article we introduce a simple client-server

architecture and algorithms for live video and Video On

Demand (VOD) ubiquitous services. To achieve satisfactory

continuous service with minimum overhead, collaboration

and coordination between small number of agents uses

several communication methods including wireless or

cellular connections. This article is an extended version of

our previous results [13].

The main features of the architecture are as follows:

1. Efficient usage of network resources complying

with the required/preferred QoS.

2. User- driven architecture which enables easy

personalization.

3. Ease of implementation.

Previous work on ubiquitous multimedia services has

focused on middleware solutions (see, for example, [1-7, 9,

10]). These ideas are good and effective but they require the

cooperation of network operators. Since the conventional

business model is defined only between the content provider

and its content consumers, the readiness of operators to

deploy such solutions is limited.

As illustrated in Fig. 1, our novel architecture relies on

both the user's communication devices (for example, smart

phone, PDA or laptop) and the continuous service/content

provider system; no changes or extensions are needed in the

operator network. The system can completely handle a range

of continuous service requirements: QoS provision, user

mobility between RATs and between different

communication devices, simple user interface and

personalization, simultaneous usage of the same device by a

number of users (while protecting privacy) and so on. The

description focuses on ubiquitous live video and VOD

services, but the system can be easily extended to other

services as well.

The architecture is based on the “best k” algorithm to

ensure efficient use of network resources [8]. This

algorithm provides high quality live-video transmission by

using few agents and proposes ways to minimize the usage

of network resources. Experimental results show that by

using the best-k algorithm, high quality video can be

delivered with an overhead factor of 1.65%.

This paper is organized as follows. In the next section the

A Client-Server System for Ubiquitous Video

Service

A

Fig. 1. High level description of a client-server system for ubiquitous

service. The subscriber can receive a service via laptop, smart phone, etc.

1
Ronit Nossenson,

2
Orit Yudilevich,

2
Omer Marlowitz

1Faculty of Computer Science, Jerusalem College of Technology, Jerusalem, Israel

2
School of Computer Science, The Interdisciplinary Center, Jerusalem, Israel

DOI: 10.9781/ijimai.2012.174

-34-

ubiquitous system requirements are outlined. In section III,

we describe the specifications of the new system by topic.

These include the system building blocks, state machines

and essential procedures. Next, some experimental results

are described in Section IV. Finally, we suggest future

research directions.

II. SYSTEM REQUIREMENTS

Providing ubiquitous service raises a number of issues

that must be addressed. In this section we specify the

technical requirements for a ubiquitous service system. First

we define the terms used in this work. Next, we list the

requirements according to their functionality: general,

usability, QoS, multiple users’ and privacy.

A. Definitions

Content provider functions as the server side. Its

responsibilities include user management, QoS management

and content provision. Service is a video service such as live

video or VOD. User is a person who subscribes to the

service. Client is the software which provides a special

service on a user device. A user has one client on each

device, per service. For example, a user who subscribes to 3

services via 4 devices has 12 clients. The client is

responsible for communication between the user and the

system, measuring and reporting QoS, agent management

and combining the received data when necessary.

 Agent is the software that is responsible for receiving and

transmitting data for the service via a specific

communication interface/technology. For example, a device

with cellular, WiFi and BT connections has one client and

up to three agents per service and user (see Fig. 2). Two or

more users can use the same service via one device

simultaneously (watching a movie together, for example). In

this case the first user who activated the service is the

primary user and the other users are referred to as secondary

users. The primary user and secondary users together are

referred to as the service users' group on a device. The

primary user manages the service users' group that is using

the service.

B. General Requirements

G1. The system supports ubiquitous service for live video

transmission and video on demand (VOD) applications.

G2. The system attempts to provide QoS as close as

possible to the preferred quality (see requirement Q1

below), with minimal user intervention and with minimal

overhead for network resources.

G3. Scalability requirements: The system supports up to A

potential agents per user. The system supports up to B

activations of service per minute. The system supports up to

C simultaneous active services. A user may have up to D

active services and up to E paused services simultaneously.

The parameters A, B, C, D and E can be extended by simple

hardware extension.

C. Electronic Image Files (Optional)

U1. Service is supplied via one client at a specific time.

U2. The system provides a convenient user interface.

U3. The user needs to configure a set of agents for each

service for each client (device).

U4. For a service, at least one device (client) and one agent

must be registered.

U5. The user can alter its set of agents at any time using a

convenient interface.

U6. For each service specified in requirement G1 the

system supports the following operations: Start, Stop, Pause,

and Resume.

U7. The "Start" operation is used for service activation the

first time as well as for service re-activation after a "Stop"

action. It can be used for inactive service only.

U8. The operation "Stop" is used for termination of the

active or paused service.

U9. The operation "Pause" is used for temporary halts of an

active service, up to a predefined timeout. The timeout can

be interrupted by user operation (“Resume”). Otherwise the

service is terminated.

U10. The "Resume" operation is used to continue the

service after the “Pause” operation, depending on the type of

service, assuming that the timeout has not expired.

U11. The outcome of the “Resume” operation for VOD

Fig. 2. User-Device-Client-Agent-Relationship. A user can have several

devices and can be subscribed to several services. For each (service, user,

device) triple there is one client. Each client can manage several agents.

Two users can share a device, for the same service or for different

services.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 7

-35-

application is continuation of the video transmission from

the point where it was paused. For the Live Video

application it corresponds to resumption of the on-line video

at the current time.

U12. For an active service, at least one agent is active.

U13. Changes of agents, without a change in client

(switching, adding and subtract agents) are done

transparently without the user’s intervention.

U14. A paused service can be resumed from any subscribed

client (device continuously).

U15. There can be only one active service per device.

U16. A user can have several active services, on several

devices.

U17. New service activation on a device that already has

another service active on it, is subject to the approval of the

primary user of the active service and is equivalent to

pausing/ termination of the previous service.

D. QoS requirements

Q1. The user can define Preferred QoS parameters and

Required QoS parameters per service. In addition, the

system has default values for these parameters per service.

Q2. The system aims to provide the user with QoS as

close as possible to the preferred QoS, with minimal user

intervention. If this is impossible the system aims to provide

QoS above the required QoS. If the QoS falls below the

required level the user is informed and the service is

terminated.

Q3. The system provides continuous service for the user

as long as there is at least one active client and active agent

capable of providing QoS above the required level.

Q4. The QoS parameters are defined for each service

separately, including the following characteristics as a

minimum: bandwidth, delay and jitter.

Q5. When the QoS parameters are higher than the

required level, but below the preferred thresholds, the

system attempts to improve the service in the following way:

(1) if the preferred QoS can be achieved using the current

client (by changing agent/s), the change is performed

transparently; (2) if the preferred QoS can be achieved only

by another client (device), the transition can be performed,

subject to the user’s approval; (3) if the preferred QoS

cannot be achieved using any other client (device), the

system provides the best QoS possible via the current client

(device).

Q6. If the QoS is below the required threshold, the

system tries to improve the QoS via the current client. If this

is impossible, the user is advised to move to another device.

If the required QoS cannot be met the service is terminated.

Q7. For each user and active service, the system

maintains a set of potential agents as a function of QoS

parameters, environmental changes, user preferences, and

agent availability.

E. Multiple User Requirements

M1. An active service has one primary user.

M2. There can be several secondary users for an active

service.

M3. A user can join a service on a specific device which is

managed by a different primary user, subject to both users'

approval.

M4. A secondary user can disjoin a service; this action is

equivalent to pausing or stopping the service to the specific

user.

M5. A primary user can be replaced by another user,

subject to both users' approval. The previous primary user

becomes a secondary user in this case.

F. Privacy Requirement

P1. A user cannot access information on services that

another user is subscribed to, even if they co-exist on the

same device (see Fig. 2), unless the user is a primary user

who is aware of the secondary users of the same service.

III. SYSTEM SPECIFICATIONS

In this section we elaborate on the technical problems and

provide specifications and algorithms for the system. The

listed specifications provide a feasible solution for the pre-

defined requirements. This section is divided into the

following sub-sections: service state machine and QoS

specification, user interface specification, agent state

machine, multi user specification and user mobility issues

are discussed in the final sub section.

A. Service State Machine and QoS Specifications

According to the requirements, each service can be in one

of three states per user: Not Active, Active (A, B, C and D

sub-states) or Paused. Fig. 3 depicts the transitions between

the states, showing all the valid transitions, their triggers and

actions.

1) From “Not Active Service” to “Active Service”: The

actions that take place in this case are: (i) the system

establishes a connection with the agent that sent the “Start”

command before it starts to transmit the content; (ii) A

handshake procedure is performed with each user’s agents,

and a list of available agents is generated. The handshake

procedure and the management of the available agent list are

described in the agent state machine below.

2) From “Active Service” to “Not Active Service”: This

transition can occur in two cases: upon a user "Stop"

command or if the QoS falls below the required level (see

requirements Q2, Q6). In these cases the data flow to/from

the client is terminated, a termination message is sent to all

-36-

available agents, so they can move to the "not active" state,

all session data are dropped on both server and client sides.

3) From “Paused Service” to “Not Active Service”: A

service can go from "Paused" to "Not Active" in two cases:

by a user "Stop" command or by a pause timeout expiration,

see requirement U9. In these cases, the system sends a

termination message to all clients to turn the available agents

to "not active”. Service- session related information is

dropped from both the server and client sides.

4) From “Active Service” to “Paused Service”: The user

can implement this transition in several ways: by sending

pause command, activation of another service on the same

device, approval of client swapping proposed by the system

and switching from primary user to secondary user in the

multiple user service mode (see requirements U9, U17, M3).

In these cases all the service session data are saved in both

server and client. Service paused messages are sent to the

active agents, so they can go into the “available” state. Data

transmission is stopped. On the server side, additional data

are stored, such as last active client, pointer to the last

transmitted I frame, last packet sequence number, file offset

(the location in the movie for VOD service), and last

decoding format in use. In addition, the timer for maximum

paused time is activated.

5) From “Paused Service” to “Active Service”: In case

the service is resumed on the same client it was paused on,

all the data exist on both the client and the server sides and

the service is simply resumed. Otherwise, if the service is

resumed on a different client (device) a format adaptation is

performed if needed. The last I frame is sent to the client

together with the following P frames and a specific

notification for the video player film offset. This enables

VOD service to resume from the same point it was paused

on the previous device. For live video service, the service is

resumed according to the current time.

6) From “Active Service” to “Active Service“: If the

"resume" command is initiated on the active client, the

command is discarded, otherwise the command is equivalent

to pausing the service on a current client and resuming it on

a new one.

Other state transitions are server internal and are related

to QoS provision. Specifically, it meets requirements G2,

U12, U13, Q2, Q3, Q5, Q6 and Q7 above.

The essential server functions are:

• Ensuring an acceptable QoS level via agent

management.

• Providing maximum transparency to the user.

• Ensuring efficient usage and minimum overhead of the

network resources.

The essential client functions are:

• Providing the user interface to the system.

• Monitoring the QoS parameters for active services and

informing the server if needed.

Fig. 3. Service State Machine and QoS management state machine for active service.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 7

-37-

• Combining and synchronizing the data, using [8] or a

similar algorithm.

The following information is stored on the server per

active user of a specific service:

• The current QoS parameters.

• The current active client and its set of active agents.

• A list of available clients with their available agents.

• Session associated information.

• List of clients and agents used in the last time interval.

• List of forbidden client transitions.

During active service, the server runs the state machine as

presented in the “Active Service State” in Fig. 3. In sub-state

A the user receives its preferred QoS by one agent; thus the

system does not have to improve its QoS or to reduce

network resource overhead associated with it.

Sub-state B is characterized by the QoS between the

preferred and required levels, thus the service can be

continued along with system efforts to improve the QoS

according to requirements G2 and Q5. The requirements

define the following priorities: QoS, minimum user

intervention and network resources (see requirements G2,

U13, Q5, Q6); hence, in state B, the following procedure is

performed periodically:

StateBProc(PreferredQoS, CurrentClient,

AllAvaliableClients):

Begin

 Bool IsPreferredQoSPossible = false;

 Bool IsPreferredQoSReached = false;

 IsPreferredQoSPossible =

 BestQoS(PreferredQoS, CurrentDevice,

 AllAvaliableClients);

 If (IsPreferredQoSPossible)Then

 Bool IsPreferredQoSReached =

 SwapAgentbyQoS (PreferredQoS, QoSList);

 End

 If (Not IsPreferredQoSReached)Then

ImproveCurrentClientQoS(CurrentQoS,

CurrentDevice);

 End

End

The function BestQoS is described below, it is

responsible for generating the list of respective agents and

possible QoS by staging a competition between the agents

(for details regarding agent competition see [8]). The QoS

list includes: (i) Best QoS that can be reached by one agent

of the current client (device)

(BestQoSSingleAgentCurrentClient) and

corresponding agent; (ii) Best QoS that can be reached by

two or more agents on the current client (device)

(BestQoSMultiAgentCurrentClient) and

corresponding agents; (iii) Similar data about other available

clients and agents (iv) Best possible QoS for each client

achieved by one or more agents. The inputs to the function

are: requested QoS threshold, current device, full list of

Fig. 4. Swap agent by QoS procedure flow chart

-38-

devices and agents.

The pseudo code of the function BestQoS is as follows:

BestQoS(QoSThreshold,CurrentClient,

 AllAvaliableClients):

Begin

Competition(Current Client’s Agents);

Set BestQoSSingleAgentCurrentClient, Agent;

Set BestQoSMultiAgentCurrentClient, Agents;

If((BestQoSSingleAgentCurrentClient ≥

 QoSThreshold)Or

 (BestQoSMultiAgentCurrentClient ≥

 QoSThreshold)) Then return true;

/* Needed QoS can’t be reached by current

client, rest of the clients are checked */

Competition(Available Clients);

Set BestQoSSingleAgentOtherClient, AgentList;

Set BestQoSMultiAgentOtherClient,

AgentMatrix;

maxQoS = max(BestQoSSingleAgentOtherClient,

BestQoSMultiAgentOtherClient);

return (maxQos ≥ QoSThreshold)

End

When agent/s that supply the required QoS is/are found,

the system attempts to swap to this/these agent/s. This is

performed by the SwapAgentbyQoS() procedure. The

flow chart of this procedure is presented in Fig. 4. This

procedure scans the possible agents according to a pre-

defined order (requirements G2, U13, Q5, Q6). The first

choice is one agent on the current client, then, multiple

agents on the current clients, finally single and multiple

agents of other clients. This procedure updates the QoS state

machine, as required.

The system should introduce the user to the full list of

other clients that can provide the preferred QoS. Client

switching is always subject to user approval. In addition, the

system should maintain a list of clients whose transitions are

forbidden (see user interface specification for details), to

avoid undesirable proposals to the user (requirement G2,

Q5).

If the preferred QoS cannot be reached the system should

try to improve the QoS on the current client (requirement

Q5), to the best possible QoS. This is performed by the

ImproveCurrentClientQoS() procedure. It uses the

current QoS and current client as inputs. This procedure

does not affect the QoS state machine, since after its

termination the QoS level is still between the preferred and

the required thresholds. The pseudo code of this procedure

is as follows:

ImproveCurrentClientQoS(CurrentQoS,

 CurrentClient)

Begin

MaxQoS

=max(BestQoSSingleAgentCurrentClient,

BestQoSMultiAgentCurrentClient);

 If ((MaxQoS > CurrentQoS) And

(MaxQoS==BestQoSSingleAgentCurrentClient))

 Then

 SwapAgents(CurrentAgents, NewAgent);

Else if (MaxQoS > CurrentQoS)

Then

 SwapAgents(CurrentAgents, NewAgents[]);

End

Fig. 5. Swap agent by overhead procedure Flow Chart

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 7

-39-

In sub-state C the QoS is equal or higher than the

preferred QoS, but is supplied by more than one agent. In

this case the system should try to reduce network resource

overhead, by attempting to supply the preferred QoS using

one agent if possible (requirement G2). The system should

try to reduce the number of active agents. This is done by

the SwapAgentbyOverhead() procedure that runs

periodically. The flow chart for this procedure is presented

in Fig. 5. The procedure updates the QoS state machine

accordingly.

In sub-state D the QoS is below the required threshold. In

this case the system attempts to improve the QoS; if this

attempt fails the service is terminated (see Q2 and Q6.). The

pseudo code of this procedure is as follows:

StateDProc():

Begin

Bool IsPreferredQoS, IsRequiredQoS = false;

IsPreferredQoS=SwapAgentbyQoS(PreferredQos)

;

If (PreferredQos) Then

 Move to State A;

 Return;

IsRequiredQoS =

SwapAgentbyQoS(RequiredQos);

If (!IsRequiredQoS) Then

 Notify user of service termination;

 Exit Active Service State Machine;

 Service state = Not Active;

 Terminate service;

Else

 ImproveQoSCurrentClient;

 Move to State B;

End

B. Agent State Machine

In this sub-section we introduce the agent state machine

(Fig. 6). As mentioned earlier, for active service, one or

more agents can be used for service supply (they are in the

“active” state), while the other agents for this service are in

the “available” state. Upon service activation the system

sends activation messages to all user clients (for the current

service). The clients instruct their agents to move to the

“available state”. The clients and agents must respond to the

activation message. This process is referred to as the

“handshake procedure”. The outcome of this “handshake

procedure” is a list of all available agents for the current

service. In order to keep the available agents list updated, all

agents must send (by client) keep-alive messages. When a

client recognizes that agent/s becomes available after

unavailability (for example device turn on) a notification is

sent to the system. If the service is active, an activation

command to the agent/s is sent. Similarly, when agents

become unavailable for active or paused service, they should

inform the system if possible. Once an agent does not send a

keep-alive message for a specific period of time it is

removed from the available agents list (“not active” state).

Agent that has completed the handshake procedure is

regarded as in available or active state until service

termination.
Below are the detailed agent state transitions of Fig. 6.

1) From “Not Active” to “Active”. This transition occurs

only upon service activation on the specific device.

2) From “Active” to “Not Active”. This transition takes

place when the agent was one of the agents that provided the

service and the service is terminated due to a user's

command or due poor QoS (see sub-section QoS

specification above).

3) From “Active” to “Available”, this transition occurs

in the case of agents/client switching for QoS reasons (see

QoS specification sub-section above) or a service state

change from active to paused (see service state machine sub-

section above).

4) From “Available” to “Active”, this can occur if the

agent is selected by the system for service transmission for

QoS reasons or when the service state moves from “Paused”

to “Active” by command from this agent.

5) From “Available” to “Not Active”, this transition

takes place for available agents of a service when the service

state is changed to “Not Active” (from “Active” or “Paused”

states).

6) From “Not Active” to “Available”, this transition

takes place for all agents upon service activation command.

In “Not Active” state the agents have no connection to the

system. In the “Available” state the agents are connected to

the system and keep-alive messages are exchanged as

described above. An agent is “Active” if it is one of the

agents that supply the service.

C. User Interface Specifications

User interface has to meet requirements G3, U3, U4, U5,

U6, Q1 and P1. In order to meet privacy requirements (P1)

the interface to a service should be a remote web page and it

should be password protected, for example.

The actions that can be performed by the user interface

are:

Fig. 6. Agent State Machine

-40-

1) Join the service: First, the user has to register and to

accept a username and password (requirement P1) to access

the system. The next step is setting the preferred and

required QoS (requirement Q1). The user can choose the

default values. The use of these values is described in the

QoS specification sub-section above. Then, the user should

register the devices; this process is described below.

2) Client and agent management: Client and agent

management is divided into three sub-processes: client/agent

addition, client/agent subtraction and client transition

management. As a guideline the user does not have to

address agents. The user chooses to alter the client setting;

the system requests the data (list of connection interfaces)

from the client and presents the options to the user. These

procedures can be implemented at any time according to

requirement U5.

(i) Client/Agent addition: When subscribing a device or

agent to a service, a user can choose to connect from the

current device (“Add this device”) or to identify the

subject device by a unique identification, an IP address

for instance. After the device is chosen the system queries

the device about possible agents (connection interfaces).

All possible agents are presented to the user and the user

chooses which agents to install. In case of agent addition

the user should choose “modify client settings” and the

system will return all the options. After the user confirms

the choice the profile at the client side is updated. If the

number of potential agents exceeds the A parameter from

requirement G3, the system displays the message to the

user and client/agent addition is aborted.

(ii) Client/Agent subtraction: The procedure can be

performed from any device. In agent subtraction, as

mentioned above, user chooses “modify client settings”

and the system shows all agents. In the case of client

subtraction the system presents the user list of all of its

clients (devices) and the user chooses the client/s to

subtract. The system does not allow subtraction of the last

client/agent (requirement U4). After the user confirms the

choice the profile at both server and client sides is

updated.

3) Client transition management: In the QoS

specifications sub-section, it was noted that in case of

insufficient QoS or inefficient use of network resources the

system can suggest switching clients to the user. As

mentioned earlier the system should try to minimize the use

of this option, to meet the requirement for minimal user

intervention (G2). For this reason there should be a

minimum period of G1 minutes between two successive

proposals to switch devices. Additionally, the system should

store recently (for G2 minutes) used agents and clients, in

order to avoid “ping-pong” transitions between clients. For

the user's convenience the system should avoid proposing

invalid transitions. For this reason the system stores a list of

forbidden client transitions, per user. The user should

manage this list. This list can be updated in two ways: by the

user interface or when the system displays the list of

optional clients for transition, the user can assign “Do not

propose this transition again” to one or more clients. The

system also should not propose a switch to a device in active

service (of any user) to comply with requirement U15. In

summary, client transition can be proposed to a user if: this

is the first proposal for G1 minutes and there exists a

potential device for transition that has not been used in the

last G2 by this user and the service, does not appear on the

forbidden transitions list, does not run an ubiquitous service

to any user and meets the QoS threshold. Upon the user’s

approval of the transition client, a swapping procedure is

performed. Client swapping is similar to pausing and

resuming the service on a new client; the only difference is

that the “pausing” is triggered by the user’s approval of the

client switching and not by the pause command. Pausing and

resuming service is described in the service state machine

sub-section above. Further work could be done to elaborate

the list of proposed clients for transition, by studying users'

preferred transitions, for example.

4) Activation, stopping, pausing and resumption of a

service: These actions are described in the service state

machine and the QoS sub-sections. For privacy (requirement

P1) the activation and resumption of a service should be

password protected operations.

5) Multiple user service management: The interface is

described in the multiple user service management sub-

section below.

6) Disjoin the service: The user should choose to

unsubscribe to the service. After the user confirms the

choice, all associated session information on both the client

and server sides are removed.

D. Multiple User Specifications

One aspect of ubiquitous service is that several users may

start to consume a service together and then want to

continue to consume it separately at a different time and

place. The requirements for multiple users (M1 – M5)

specify this case.

In order to support the multiple user mode the system and

the client need to support the following actions:

• Add user to service user group.

• Remove user from service user group.

• Primary user substitution.

All of the above only apply to active service.

1) Add user to service user group: To add a user to a

service group, the primary user should choose the “Add user

to the current service” option and specify the user. The

system asks for the new user’s confirmation, according to

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 7

-41-

requirement M2, by requesting a password. Once the subject

user is approved to join the service, the system performs the

following steps: the user is added to the service's user group,

a connection is established with all the users' clients to move

agents to the “available” state and to generate a list of

available agents. The service state for the new user is

"paused". Note that the user must be subscribed to the

service, but the device can only be subscribed by the

primary user.

2) Remove user from service group: Confirmation by the

subject user is performed as above. If the primary user

wants to leave the service a new primary user should be

chosen according to requirement M5 (below). Then the

departing user should chose to stop or to pause the service

(requirement M3).

3) Primary user substitution: The following steps should

be performed: (i) upon user request to change primary user,

the system should generate a list of potential primary users.

The new primary user can be a user who is in the service's

user group and subscribed the current device to the service.

If there is no such user, the primary user change cannot be

done. (ii) The list of potential primary users is displayed to

the current primary user and he/she should choose the new

primary user. (iii) The last step is to stage the competition

between agents of the new primary user on the current client,

and to choose active agent/s for the service [8]. The

previous primary user becomes the secondary user and stays

in the service's user group.

E. User Mobility

User mobility is a focal issue in ubiquitous service. In this

sub-section we show that the mobility issue is resolved in

our system. User mobility can have two negative effects: the

user needs to switch devices and/or the QoS degrades due to

coverage or load issues. If the user needs to switch devices

this should be done by pausing the service on the old client

and resuming it on the new one. The case of QoS

degradation is discussed above. Thus our specifications

resolve the user mobility issue without having to take any

location associated actions, by enabling a high level of

customization and addressing QoS as a general issue that is

not related solely to mobility.

IV. PERFORMANCE EVALUATION

In the performance evaluation of our method we consider

the following additional competing methods: single

transmission (that is, the way live video is transmitted today)

and simple (not controlled or coordinated) multiple

transmission of 2-5 agents. In simple multiple transmissions,

the agents transmit the video streams without coordination

with the server and the client joins the streams using the

simple join function of the minimal arrival time. For every

packet sequence number, the client considers the first

instance to arrive. That is, the resulting arrival times are the

minimum arrivals times of every packet.

Due to the short distance between the agents, we cannot

assume that they are statistically independent. Therefore, our

method for evaluating the suggested solution is by

measurements of real traffic, rather than theoretical analysis.

First, we transmit video using several agents in various

conditions in order to collect the data. The transmission of

the agents was done using LU60 of LiveU [11], using one to

five cellular modems connected to three different cellular

networks. Each agent has a different connection to the

internet. Next, a feasible solution for splitting and joining is

implemented. We record the received data with LiveU's

server (LU1000) [11] and also using 'Wireshark' software

[12]. We collect data which is relevant to parameters such as

delay, jitter and retransmission ratio. Therefore, we record

for each packet in each transmission from each agent the

TABLE III

PACKET LOSS RATIO

Process Average Worst case

1 agent 2.56% 17.0%

2 agents 0.04% 1.22%

TABLE IV

AVERAGE PERCENTAGES OF JITTER CONDITION VIOLATION

Cond

.

Best

(A)

Best

(B)

Best

(C)

1

agt.

2

agt.

3

agt.

4

agt.

5

agt.

>0 66% 79% 83% 80% 73% 70% 69% 69%

>1 61% 75% 79% 76% 69% 66% 64% 64%

>2 58% 71% 75% 75% 67% 63% 61% 60%

>3 55% 67% 71% 73% 65% 60% 57% 56%

>4 45% 49% 51% 69% 56% 48% 41% 37%

>5 42% 44% 46% 67% 54% 44% 37% 31%

>6 37% 37% 38% 65% 50% 39% 31% 24%

>7 35% 35% 35% 63% 48% 37% 28% 22%

>8 33% 33% 33% 60% 45% 34% 26% 20%

>9 26% 27% 28% 53% 38% 29% 22% 17%

>10 13% 14% 16% 39% 26% 19% 15% 12%

>11 7% 8% 11% 32% 20% 14% 11% 9%

>12 6% 7% 10% 30% 18% 13% 10% 8%

>13 5% 7% 9% 29% 17% 12% 9% 8%

>14 5% 7% 9% 28% 17% 12% 9% 8%

>15 5% 6% 9% 28% 16% 11% 9% 7%

>16 5% 6% 8% 27% 16% 11% 8% 7%

>17 4% 6% 8% 26% 15% 10% 8% 6%

>18 4% 5% 7% 25% 14% 10% 7% 6%

>19 4% 4% 6% 21% 12% 8% 6% 5%

>20 3% 3% 4% 16% 9% 6% 5% 4%

>25 2% 2% 2% 11% 6% 4% 3% 3%

>30 2% 1% 1% 9% 5% 4% 3% 3%

>35 2% 1% 1% 8% 4% 3% 3% 2%

>40 2% 1% 1% 8% 4% 3% 3% 2%

>45 2% 1% 1% 7% 4% 3% 3% 2%

>50 2% 1% 1% 6% 3% 2% 2% 2%

-42-

Packet Sequence Number and Time of Arrival. Finally, we

evaluate the method's potential performance using the data

collected at the beginning.

The recording is done throughout the day including both

peak (busy hour) and off-peak hours. Each experiment

consists of 5 samples of video transmissions using one to

five simultaneous agents. The experiment is repeated 9 times

with long video files (about 15 minutes, 30,000-65,000

packets each). In addition, the experiment is repeated twice

with short video files (five minutes) to validate that the

observed statistic behavior also fit short transmissions.

Overall, the recording trace includes statistics of ~ 6 million

real packets.

The analysis was performed three times, with jitter

requirements of 13 msec. (“Condition A”), 25 msec.

(“Condition B”), and with jitter requirement of 40 msec.

(“Condition C”). The considered performance parameters

are overhead factor, packet loss ratio and jitter.

Regarding the average overhead, processes with one agent

naturally have no overhead (factor 1), processes with two

agents have overhead of factor 2 (every packet is transmitted

twice), and so on. Table I summarizes the overhead factor of

our method relative to a single agent process. Each line in

the table specifies the average overhead factor, the observed

minimum overhead factor and the observed maximum

overhead factor. The best k process with parameter 13 has

an average overhead factor of 3.08, the best k process with

parameter 25 has an average overhead factor of 1.91 and the

best k process with parameter 40 has an average overhead

factor of 1.65. The differences in the overhead factors are

due to the fact that fewer competitions are generated when

the requirement from the jitter is less demanding. In a

competition all the potential 5 agents transmit two segments,

thus, the overhead increases with the number of

competitions. Interestingly, the observed minimum

overhead factor of the best k process with parameter 40 is

1.09 which is an excellent result. In this observation, only 46

competitions were generated by the algorithm (92 segments)

out of 4000 segments in the total transmission and all other

3908 segments were transmitted by a single agent only

(97.7%).

To understand the source of the overhead results, Table II

plots the percentages of segments transmitted by a number

of agents in each algorithm. For example, when using the

best k process with parameter 40, an average of 83.7% of

the segments were transmitted by only one agent, 0.1% of

the segments were transmitted by exactly two agents and

16.2% of the segments were transmitted by all 5 agents

(during competitions). Table II illustrates that the best k

algorithms with parameters 25 and 40 chose most of the time

to use only one transmitting agent, but kept replacing it

when its performance decreased. These insights imply that

the overhead can be reduced significantly by developing a

different mechanism to replace/select the transmitting agents

other than a competition.

Regarding the packet loss ratio, all best k processes and

all multiple transmission processes with 3 agents or more

have 0.0% average packet loss ratio. The measurements of

the processes with one and two agents are presented in Table

III. Generally, the networks are reliable and usually the

packet loss ratio is very low. However, a very high packet

loss ratio of up to 17% packet loss ratio was observed for a

single agent in some cases. Naturally, using additional agent

reduces the packet loss ratio dramatically, and using more

agents or more sophisticated algorithms reduce the packet

loss ratio to 0.0.

In order to evaluate the impact of the statistics on the

actual user experience we study the function 1-CDF

(Cumulative Distribution Function). It represents the

average percentages of times that the arrival process violates

the corresponding jitter condition. Table IV presents these

jitter statistic of the competing methods. Each line describes

the average percentages of times that the arrival processes

violate the corresponding jitter condition. That is, the

packets inter-arrival time is larger than the specified

threshold. For example, in line number twelve, the jitter

condition is “smaller than 11”, and the process “best k with

parameter 25” violates this condition in 8% of the samples

on average while the process that uses simple multiple

transmissions of three agents violates this condition 14% on

average. As can be seen from this table, starting from jitter

condition “smaller than 11” the best k processes with

parameters 13 and 25 outperform the other processes with a

significant small number of condition violation. The best k

process with parameter 40 behaves very similar to the

process with five multiple agents starting from jitter

condition “smaller than 13”. Note that all best k processes

perform at least three times better than single transmission.

All above mentioned results imply that there is no need to

require a strong performance condition to improve the

TABLE I

OVERHEAD FACTOR

Process Average Minimum observed Maximum observed

Best k (A) 3.08 2.05 3.93

Best k (B) 1.91 1.10 2.79

Best k (C) 1.65 1.09 2.72

TABLE II

AVERAGE PERCENTAGES OF TRANSMITTING AGENTS

Process
% using

1 agt.

% using

2 agt.

% using

3 agt.

% using

4 agt.

% using

5 agt.

Best k (A) 45.5% 3.2% 0.0% 0.0% 51.3%

Best k (B) 77.0% 0.4% 0.0% 0.0% 22.6%

Best k (C) 83.7% 0.1% 0.0% 0.0% 16.2%

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 7

-43-

performance significantly. The performance of the algorithm

under different performance requirements is similar.

However, the overhead increases with the performance

condition strength. Thus, selecting normal to weak

performance condition is recommended.

V. FURTHER WORK AND CONCLUSION

This article described a novel approach to ubiquitous

multimedia service - client/server architecture. The system

incorporates detailed requirements, specifications and

algorithms. We address all known issues related to

ubiquitous service: QoS management, efficient usage of

network resources, limited overhead, simultaneously usage

of a device by a number of users, user mobility and user

interface. An additional advantage of our system is that it is

network independent, and thus can use any RAT technology.

Obviously, it can coexist with other ubiquitous service

architectures.

REFERENCES

[1] P. Bellavista, A. Corradi, and L. Foschini, "MUM: a middleware for

the provisioning of continuous services to mobile users", In IEEE

Sym.. on Computers and Communications, Vol. 1, pp. 498-505,

2004.

[2] P. Bellavista, A. Corradi, and L. Foschini, "Context-aware handoff

middleware for transparent service continuity in wireless networks",

Pervasive Mob. Comput. vol. 3(4), pp. 439-466, August 2007.

[3] P. Bellavista, A. Corradi, and C. Giannelli, "Mobility-aware

management of internet connectivity in always best served wireless

scenarios", In Mobile Networks and Applications, Vol. 14, pp. 18-

34, Kluwer Academic Publishers, 2009.

[4] Y. Cui, K. Nahrstedt, and D. Xu, "Seamless User-Level Handoff in

Ubiquitous Multimedia Service Delivery" Multimedia Tools Appl.

vol. 22(2), pp. 137-170, February 2004.

[5] R. Ferrus, O. Sallent, and R. Agusti, "Interworking in heterogeneous

wireless networks: comprehensive framework and future trends",

IEEE Wireless Communications, vol. 17(2), pp. 22-31, April 2010.

[6] Yong-Ju Lee, Choon-Seo Park, Jin-Whan Jeong, Hag-Young Kim

and Cheol-Hoon Lee, "UMOST : Ubiquitous Multimedia Framework

for Context-Aware Session Mobility", Int. Conf. on Multimedia and

Ubiquitous Engineering (MUE 2008), pp. 3-8, April 2008.

[7] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li, “QoS-aware

middleware for ubiquitous and heterogeneous environments”, IEEE

Comm. Magazine, vol 39(11), pp. 140-148, November 2001.

[8] R. Nossenson and O. Markowitz, “Using coordinated agents to

improve live media contents transmissions", Int. Conf. on Systems

and Networks Communications (ICSNC 2011), pp. 167-170, Oct.

2011.

[9] M. Takemoto, T. Oh-ishi, T. Iwata, Y. Yamato, Y. Tanaka, K.

Shinno, S. Tokumoto, and N. Shimamoto, "A service-composition

and service-emergence framework for ubiquitous-computing

environments", International Symposium on Applications and the

Internet Workshops, pp. 313-318, 2004.

[10] M. Takemoto, H. Sunaga, K. Tanaka, H. Matsumura, and E.

Shinohara, "The Ubiquitous Service-Oriented Network (USON) - An

Approach for a Ubiquitous World Based on P2P Technology", in

Proc. Peer-to-Peer Computing, pp.17-24, 2002.

[11] LiveU web site: http://www.liveu.tv/ accessed: January 2012.

[12] Wireshark web site: http://www.wireshark.org/ accessed: January

2012.

[13] R. Nossenson, O. Yudilevich and O. Markowitz, "Client-Server

Architecture and Algorithms for Ubiquitous Video Service", The 6th

International Conference on Multimedia and Ubiquitous Engineering

(MUE 2012), Madrid, Spain, July 2012.

Ronit Nossenson holds a PhD on stochastic

models for web servers and an M.Sc. on

incremental connectivity of a graph, both from the

computer science department at the Technion,

Israel institute of technology. She has over 12 years

of experience in modeling and analysis of web

traffic. Since 2005, she specializes in optimization

and trouble shooting of data traffic over cellular

network, with tier-one operators' real traffic analysis. Currently, Ronit is

the head of the Communication M.Sc. program in the Computer Science

department of the Jerusalem College of Technology.

Orit Yudilevich received the BA degree in

computer science and mathematics from the Tel-

Aviv University and has recently (2011) received

her M.Sc. degree in computer science from the

Interdisciplinary Center Herzliya. She is now with

the Israel Defense Force.

Omer Markowitz received the BA degree in computer science from the

Tel aviv-Yaffo Academic College in 2004 and has recently (2011) received

his M.Sc. degree also in Computer science from the Interdisciplinary

Center Herzliya.

