
Special Issue on Intelligent Systems and Applications

-52-

Abstract —We present DEVELOP-FPS, a software tool

specially designed for the development of First Person Shooter

(FPS) players controlled by Rule Based Scripts. DEVELOP-FPS

may be used by FPS developers to create, debug, maintain and

compare rule base player behaviours, providing a set of useful

functionalities: i) for an easy preparation of the right scenarios

for game debugging and testing; ii) for controlling the game

execution: users can stop and resume the game execution at any

instant, monitoring and controlling every player in the game,

monitoring the state of each player, their rule base activation,

being able to issue commands to control their behaviour; and iii)

to automatically run a certain number of game executions and

collect data in order to evaluate and compare the players

performance along a sufficient number of similar experiments.

Keywords —Intelligent Game Characters, Behaviour Control

and Monitoring, Rule Based Scripts, Development Software Tool.

I. INTRODUCTION

N the recent years artificial intelligence become a key

feature to the success of a computer game. The hard-core

gamer no longer accepts "space invaders" kind of behaviour

with easily identifiable patterns, he expects the game to deliver

a convincing challenge always different and interesting. To the

game publisher the increase of a game lifespan is also a

strategic decision to make; the player capability of defining

new scenarios and adversaries allows him to define his own

challenges and opponents expanding the longevity of the

game.

The development of game oriented platforms, consoles or

special tuned computers, provided new spaces to developed

and apply new AI technics in commercial games. Game

development toolkits are starting to provide support to design

of non-player characters’ behaviour (NPCs), mainly through

the use of copyrighted languages (UnrealScript on

UnrealEngine [1]), open-source or free languages (Lua on

World of Warcraft [2]) or libraries of behaviours (PandAI on

Panda3D engine [3]). Although some commercial games

include game editors, these are usually centred on terrain or

level construction, giving a limited support to the artificial

intelligence aspects. The high-end game developments of tools

support the design and deploy intelligent NPC through limited

and proprietary solutions. Most of the game companies had its

own tools and development kits, which are not made available

to the game community. The low-cost, open source and

shareware alternatives put most of their effort in supporting the

game engine and graphical design, solving problems like

physical simulation, collisions detection and character

animation, the tools to assist the design and development of

NPCs' behaviour are usually omitted.

The existence of a debugging tool to validate the behaviour

of a NPC is still a dream in the designer’s mind. As the

behaviour complexity of NPCs increases, also growths the

need for a tool that provides a set of functionalities like:

breakpoints that can stop a behaviour script at any point;

recreate situations to test snippets of code; monitor variables,

functions and NPCs knowledge; force the behaviour or

remotely control a character. Most of the scripting languages

used in the development of AI components are interpreted

(directly or in byte-code), and the common tool available to

construct those scripts is a text editor with colour syntax

(although some languages provide plugins for standards IDE

only for write the code). When some execution bug occurs, the

common procedure is stopping the script, in some situations

the interpreter will also crash. Some better interpreters will

provide an error message identifying the type of error and its

location in the code. With no tools to deploy, test and monitor

the components, it is up to the programmer to perform the

debug and test cycle of his own code. For instance, the Unity

game development tool [4,5] provides a debug mechanism

based on log messages produced in the script. The existence of

mature tools providing a professional environment to support

all the development process would dramatically reduce the

time spend in this cycle, liberating the programmer to produce

better code.

If we want that a game became a professional product, we

have to provide tools that allow extensive and professional test

of the code, guaranteeing the quality of the final delivery.

Scripting languages without tool support can rapidly

degenerate in spaghetti code with lots of tweaks and artifices

that disallow any future changes or reuse of the program.

We propose a generic architecture to support the process of

development and test of autonomous characters behaviour in a

computer game environment. Based on this architecture we

create a software tool (DEVELOP-FPS), which support the

development, debug and execution of NPCs behaviours in a

FPS like game. The tool is supported on the Unreal Tourment

2004 engine and uses the Pogamut API library [6] to access

the environment sensor information and control of the avatar.

Our tool provides the developer with a set of functionalities

DEVELOP-FPS: a First Person Shooter

Development Tool for Rule-based Scripts

Bruno Correia, Paulo Urbano and Luís Moniz,

Computer Science Department, Universidad de Lisboa

I

DOI: 10.9781/ijimai.2012.167

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 6

-53-

that allow monitor and control an individual character, define

and deploy specific scenario situations, gather data and

statistics of running experiments, and get different perspectives

of the scenario.

In the next section we detail our generic architecture in a

global perspective. In section 3 we present our application and

the options made. Finally in section 4 we make some

conclusions and provide future development directions.

II. GENERIC ARCHITECTURE

Our generic architecture is composed by four main

components: The NPC behaviour definition script; the

individual control console; the global control console; and the

game engine server. These components were substantiated

using the Jess Rule Based Language [7] to define the

characters behaviour and the Unreal Engine as the game

server. This architecture is outlined in figure 1.

Fig. 1. Generic architecture: the Unreal Tournament Server, The Global Console and the individual Non Player Character Agents with the Jess scripts.

We can split this architecture in two main component

classes: individual character management, and global

management. The first group comprise the tools to access,

monitor and control and individual character. Through those

tools the developer can issue commands to the agents, using

the individual console, which can cause a wide range of

effects, from alterations in the character internal

representations to consequences in the game environment. In

order to maintain a certain degree on independence from the

specific game environment, all the control of the NPC avatar

in the environment is actuated through a middleware interface

(Pogamut), that provide an intermediate abstraction over the

game engine. The NPC behaviour script can be debugged and

executed using the console, the developer can directly control

the interpreter, issuing commands, stopping execution, testing

alternatives, and monitoring execution.

The second group comprise the simulated environment

where all the characters actuate, and a global management

tool. The simulated environment provides a game world with

a physical engine, graphical representations of the environment

from different points of view, and functionalities to interact

with the scenario – actions an NPC can perform and

information it can perceive. As stated before the actions and

perceptions are made available through the middleware

interface.

The global console offers a set of functionalities to manage

the characters as group, issuing commands that all of then must

accomplish.

One of our objectives with this generic architecture was to

provide a relative independence between what are the tools

made available to the development, debugging and execution

of characters behaviour and the specifics of the game engine.

This architecture is an evolution of earlier work presented

originally in [8].

Special Issue on Intelligent Systems and Applications

-54-

III. THE SOFTWARE TOOL DEVELOP-FPS

DEVELOP-FPS is a software tool written in JAVA,

specially designed for the development of First Person Shooter

(FPS) players controlled by Rule Based Scripts in Jess.

DEVELOP-FPS may be very powerful if used by FPS

developers to create, debug, maintain and compare rule base

player behaviours along a number of repeated experiments. It

was designed for developing scripts for the Game Unreal

Tournament but it can easily be adapted to other game

platforms.

In figure 2 we may see an example of DEVELOP-FPS in

action: In the centre two NPCs are fighting, on the right the

Global Console is displayed and on the top and left we can see

the individual console of one the players and the 2D-map as

seen from the that player perspective.

Fig. 2. A screenshot of the game control with four windows displaying a graphical view of the environment, two 2D maps representing a global situation an

individual position, an individual control console.

We will now proceed to detail the tool architecture and their

main components and respective functionalities.

A. Global Terminal

The global console role functions are: 1) to offer a bird eye

view of the world, providing a 2D map of the game world and

displaying the waypoints and character positions; 2) launching

an individual console for each character giving the user the

possibility to monitor and control each NPC; 3) the possibility

to stop and resume the game execution; and 4) to automatically

run a certain number of game executions and collect data in

order to evaluate and compare the characters performance

along a sufficient number of similar experiments. In Figure 3,

we see a snapshot of the global console in a game played by 2

NPCs with IDs 218 and 219.

AS we said above, the global console 2D map will represent

an updated bird eye view of the NPCs positions (large circular

icons), with a different colour for each NPC, and also the

waypoints: the reference locations in the environment defined

by the user, for navigation purposes. The information is

obtained from each NPC trough Sockets: each NPC sends its

position to the Global Console every 0.5 seconds.

In the top of the console we see the IDs of the connected

clients (the individual identification of each game character),

and the one selected will have its respective console displayed,

the others will be hidden—only one of the individual consoles

can be displayed at any moment. In the bottom we may see

two buttons that are used to stop the game execution of every

character (“Stop All”) and to resume their execution (“Resume

All”). This is an important feature for developing behaviours

for game characters, due to the frequent necessity to stop the

game execution for debugging and testing behaviours.

There are three parameters for the repetition of a set of

similar experiments: 1) The duration of each run; 2) the

number of experiments and 3) the number of agents. Note that

each game can end because there is only one player left or

because the duration has reached the defined limit.

The Global Console is responsible for start up the NPCs,

run the game until it finishes, collect the game reports and

destroy the NPCs, repeating this procedure the right number of

runs.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 6

-55-

Fig. 3. The display of the Global Console: the 2D world map where we see a

set of waypoints and two characters. In the bottom of the console we see the

Pause All and Resume All buttons and the three important parameters to

repeat a set of experiments.

At the moment, we do not provide an interface for

specifying which settings the user wants varied, and what

values he wants them to take for, neither for specifying what

data to collect from each run. It is up to the NPC developer to

program all this information directly in the JAVA code. For

example, he may want to vary the set of world maps to use and

he may want the report of the NPC winner, the number of

survivors, the energy of NPCs in the end of the game. The

repeated experiments report will be written on a file (in csv

format).

B. NPC Terminals

Each Non Player Character (NPC) has its own private

console (Fig. 4), which may be hided or visible and when is

displayed it can be used for monitoring and controlling the

game character. It displays the NPC position, orientation

coordinates and sensory information, along with information

regarding the rule base execution. There is the possibility to

display a world map with an icon representing the Terminal

Player, which can be used to tell the NPC to go to a certain

position on the map. Below there is a mini-command center.

The jess code entered in this command center is executed only

by this NPC and the output can be visualized above the

command center in a window. This jess code can be used for

additional NPC behaviour monitoring and controlling. On the

left, we find three manual buttons for controlling the NPC

movements and on the bottom a line of buttons useful for

stopping and resuming execution besides other functionalities.

In the presence of the Global Terminal only one NPC is

allowed for display, as we do not want to fill the screen with

terminal windows. If we want to monitor or control different

agents, we have to activate the display of one after another

sequentially. In order to choose to be displayed a different

NPC filling a specific slot in the Global Terminal with the

NPC ID.

In case the Global Console is switched off, something

different happens: every time a created NPC does not detect

the Global Terminal, it launches its individual terminal.

Therefore, if there are 10 NPCs created from the same

computer, there will be 10 individual terminals displayed in

the computer monitor, visually overcharging it.

Fig. 4. Example of a NPC terminal. On the top section the Jess data, which can be totally or partially hiden. On the left, three manual movement and orientation

button controls. On the right, the agent state may be displayed, and on the center, we see the command window.

1) Control Buttons Line

In the bottom of the NPC terminal we see a line of control

buttons (see Fig. 5).

Fig. 5. The NPC control interface. From left to right, Kill

agent, Reload logic, Play/Pause agent, Show/Hide agent state,

Special Issue on Intelligent Systems and Applications

-56-

Show/Hide Jess state, Show/Hide map. In the Figure, the agent

state is hided and the same happens with the Jess state.

We will describe each button function from left to right.

Kill agent button: The NPC is killed and disappears

from the game.

Reload Logic: If we change the NPC script, by

activating this button, the agent behaviour will be

controlled by the most recent script version. It will be

updated in the agent without being forced to close the

application and reinitialize the game.

Play/Pause: The NPC execution is paused and can be

resumed. This way we can stop a certain player in order

to monitor its behaviour with more detail. We can resume

the behaviour at any time.

Step: Behaviour is executed one step forward. Time is

divided in steps and behaviour can be followed step by

step.

Show/Hide Agent State: The agent state, which

appears on the right section of the terminal window, may

be hided or displayed.

Show/Hide Jess State: The agent information

regarding the Jess rule based script execution may be

hided or displayed.

Show/Hide Map: The NPC map can be hided or

displayed.

2) NPC Sensory Information

In order to monitor the behaviour execution of an NPC, it is

useful to access to its most important internal data, like the

energy level, the position and rotation and also other relevant

information like if it is moving or if it is seeing or hearing

anything. What about the enemies? Is it seeing any of them? It

is seeing any weapon and what about the number of

ammunition that it is currently possessing? All that information

can be displayed on the individual terminal window, along

with the NPC ID and name (see Fig. 6).

At this point, we have considered the referred data as the

most important to be displayed. As we will explain later there

are other ways to monitor other aspects of the agent, by using

the powerful command window tool.

3) Manual Controls

On the left we may see three manual control buttons that

allow us to control manually the movement of an NPC. By

clicking the right or left arrow buttons, the NPC will make a

respectively clockwise or anti-clockwise 45º rotation; by

clicking the north arrow, it will advance forward a certain

small distance, if possible. This buttons can be very useful if

we want to manually position the NPC so that it will end with

a certain position and orientation.

Fig. 6. The displayed sensory information in a NPC console.

4) Individual 2D Map

We can visualize a world map with the position of every

NPC in the game but where the position of the currently

monitored NPC is highlighted (see Fig. 7).

Fig. 7. 2D Map. It allows the visualization of the monitored agent in relation

to the others and the world. On the top we see information regarding the

colour legends.

The map may be used as an interface for controlling the

position of the NPC. The user can click in any waypoint on the

map, and if it is possible, the NPC goes directly to the chosen

waypoint.

5) Jess Monitoring

In order to develop and maintain a rule based script it is

very useful to be able to monitor the list of facts from the Jess

working memory, the agenda or rule activations, the selected

and fired rule and also the available user defined Jess functions

along with some useful built-in ones (see Fig. 8). All this

information may be displayed in the individual terminal

window.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 6

-57-

Fig. 8. Jess monitoring information: the working memory facts list, the rule activations and fired rule and also the user defined functions along with other

useful built-in functions.

After stopping a NPC, it will be easy to test the script rules,

monitoring their activation in a certain situation. We can

follow the rule-based behaviour of a NPC using the step

control button and observing the Jess information on the

individual terminal window.

The user defined functions visualization was introduced

with the goal of helping the user just in case he wants to

execute a particular function using the command window. It

will certainly be useful for him to look up for the right function

name.

On the right of the terminal window, depicted in Fig. 5, we

see three buttons that allow us to hide any of these three Jess

information types.

6) Command Window

For a full agent monitoring and control, in the individual

terminal is offered a command window, which is an interface

where the game developer has the possibility to execute any

Jess command and behaviour or perception functions and

observe their output. This is an important tool for script

exploration and debugging besides being very useful for

setting up test situations.

The user can fire rules step by step tracing the NPC

behaviour, following the evolution of the NPC state and facts

list as well as the rules activation and selection. Or he can

execute some specific Jess function that extends the NPC state

besides the standard information given on the right and

referred on III.B.2. The user can even create a function in real-

time and execute it, and as Jess is written in Java, he can have

full access to the Java API.

As an example, consider that we want to test the script when

the user is facing the enemy. We would run the game until our

NPC sees its enemy and that after pausing the game, we would

pick up the right user defined Jess function: (turn-to- enemy),

and execute it in the command prompt. Afterwards we would

see the ordered list of rule activations in the window terminal

by executing the (agenda) command, so that we could check if

the rules script were behaving as expected.

C. The Execution Step: the interface between JAVA and JESS

The game execution is divided in steps, but the script

developer is responsible for the definition of what is a step,

although there are some restrictions. The JAVA NPC

controller will always put two special Jess modules in the

focus stack: the PERCEPTION and BEHAVIOR, and will

issue a (run) command for execution of the PERCEPTION

rules followed by the BEHAVIOR ones.

Thus, it is convenient that the script developer separates the

Jess rules in two modules: one specialized in gathering

information like, for example, the nearest enemy location, and

the other specialized in actions, like moving or shooting. In

each module more than one rule can fire—each module is

executed only when no more rules fire. Therefore, the script

must carefully manage the return of the control to JAVA so

that Jess rules in any of the two modules do not fire forever.

TABLE I

A JESS SCRIPT TO ILLUSTRATE A SIMPLE NPC BEHAVIOUR DEFINITION

USING A PERCEPTION/ACTION CYCLE.

;An example of Deftemplate

;to store all about the agent

(deftemplate bot

 (slot see-enemy)

 (slot hear-anything)

 (slot moving)

 (slot nav-target)

 (slot enemy-target))

;Setup

(deffacts SETUP

 (perception)

 (action)

 (bot (see-enemy FALSE)

 (nav-target nil)))

(defmodule PERCEPTION)

;Rule to collect info about the agent

(defrule perception

 ?f <- (perception)

 ?x <- (bot (nav-target ?target))

 =>

 (retract ?f)

 (assert (perception))

 (modify ?x (see-enemy

 (see-enemy-func))

 (enemy-target

 (get-enemy-location)))

 (return))

(defmodule ACTION)

;Rule to pursuit and fire at the enemy he sees

(defrule fires-and-pursuit-enemy

 (declare (salience 100))

 ?a <- (action)

 ?bot <- (bot (see-enemy TRUE)

 (enemy-target ?t&~nil))

 =>

 (retract ?a)

 (assert (accao))

 (go-to-enemy ?t)

 (shoot ?t)

 (return))

We show in Table I an example of a toy Jess script, only for

illustration. The (return) command assures that control no

Special Issue on Intelligent Systems and Applications

-58-

more rules are executed inside the respective module: after a

(return) in a PERCEPTION rule, control is given to the

ACTION module, and after a (return) in an ACTION rule,

control is given back to JAVA, putting an ending in the step.

We can see several perception and action functions: (see-

enemy-func) returns a boolean and (get-enemy-location)

returns the enemy position coordinates; (goto-enemy) means

that the MPC goes towards a position near the enemy and

(shoot) means the NPC turns towards the enemy position and

shoots.

Note that while in the JESS command window we can

execute a rule after another monitoring behaviour in a thinner

scale than a step. In the example given there is only one rule in

each module and so a step execution will fire 2 rules in case

they are both activated.

At table II we present another short example of the Jess

code to control the character movement in a formation

controlled by the group leader. As the previous example the

behavior is controlled by a cycle of perception/action activated

be a message from the squad leader. This message indicates to

the character is new position on the formation and the

direction it should be facing. When a new message is received,

the PERCEPTION module stores the information of the

character new objectives. This information is used to activate

the module ACTION and execute the appropriated actions to

achieve those goals.

TABLE II

AN EXEMPLE OF A PICE OF CODE THAT CONTROL THE MOVEMENT OF A CHARACTER IN A FORMATION

..

This rules and modules can be combined in more complex

behaviours, taking advantage of the capability of the tool

environment to make extensive tests to each component.

Although the integration of different pieces of code is not

entirely error free, these characteristics provide us with a

significant enhancement over the current accessible tools.

(defmodule PERCEPTION)

(defrule perception

 ?f <- (perception)

 ?x <- (bot) ; representation of BOT current attributes

 =>

 (retract ?f)

 ;If received a message to move in formation (id 9)

 (if (and (eq (get-receiver-team-id-from-message) 9))

 then (bind ?var (select-place-on-diamond-formation

 (get-location-from-message)

 (get-rotation-from-message)))

 ;setup destination

 (modify ?x (nav-target ?var))

 ;setup bot rotation

 (modify ?x (rot-target

 (select-rotation-on-diamond-formation ?var)))

)

 (assert (perception))

 (store RuleFired perception)

 (return)

)

...

(defmodule ACTION)

(defrule go-to-destination

 ?a <- (action)

 ;If there is a destination and a rotation

 (bot (nav-target ?target&~nil)(rot-target ?rot))

 =>

 (retract ?a)

 (assert (action))

 ;move bot

 (go-to-target ?target ?rot))

 (store "RuleFired" go-to-destination)

 (return)

)

...

)

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 6

-59-

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a generic architecture to support

the development of tools to assist the design, debug and

execution of artificial intelligent non-player characters in a

game simulated environment. We build the application

DEVELOP-FPS as a concrete example of the implementation

of the architecture, and introduce some of its core

functionalities and capabilities. This tool allows the

management of the NPCs from different levels, individually

monitoring and controlling their behavior or act in a global

perspective.

We have designed several experiments using this tool, from

simple behaviours that only follow a fixed path to advanced

cooperative team behavior which include collision avoidance

and split and regroup capabilities. Our tool was fundamental in

the debugging process and testing of the developed

behaviours. The advantages of forcing situations when a

specific behavior characteristic was triggered and follow the

execution trace of the agent rules were an improvement in the

character creation.

We believe that this kind of tools is fundamental in the

process of constructing and deploying artificial intelligence

components. Although commercial games companies had their

own proprietary tools, these are not made available to the

general public. The use of a text editor and a trial and error

approach hardly is viable when the project grows beyond a

certain dimension. The development of these tools is a

something that in a close future had to taken into account when

a new game project is initiated.

By now we are already extending the game developer tool in

order to have different agent teams controlled by the Global

Console. Another useful extension can be the addition of a

command window into the Global Console so that we can

broadcast Jess commands and functions to every Non

Character Player or just to a specific team, which may help

setting up test scenarios. The definition of teams and the

definition of coordinated actions and group tactics is currently

work in progress. We expect that our tool will improve and

facilitate the designer tasks.

REFERENCES

[1] UnrealEngine and UnrealScript official web page

(http://www.unrealengine.com/).

[2] Whitehead II, J., Roe, R.: World of Warcraft Programming: A Guide

and Reference for Creating WoW Addons. Wiley; (2010).

[3] Lang, Christoph: Panda3D 1.7 Game Developer's Cookbook. Packt

Publishing (2011).

[4] Goldstone, Will. Unity Game Development Essentials. Packt

Publishing; (2009).

[5] Unity game development tool official web page (http://unity3d.com).

[6] Pogamut official web page (http://pogamut.cuni.cz).

[7] Friedman-Hill, Ernest. Jess in Action: Java Rule-

Based Systems. Manning Publications (2003).

[8] Moniz, L., Urbano, P., Coelho, H.: AGLIPS: An educational

environment to construct behaviour based robots. In Proc. of the

International Conference on Computational Intelligence for Modelling,

Control and Automation – CIMCA (2003).

[9] Millington, Ian: Artificial Inteligence for Games. Morgan Kaufmann

(2009)

