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 

Abstract — Virtual Worlds Generator is a grammatical model 

that is proposed to define virtual worlds. It integrates the 

diversity of sensors and interaction devices, multimodality and a 

virtual simulation system. Its grammar allows the definition and 

abstraction in symbols strings of the scenes of the virtual world, 

independently of the hardware that is used to represent the world 

or to interact with it. A case study is presented to explain how to 

use the proposed model to formalize a robot navigation system 

with multimodal perception and a hybrid control scheme of the 

robot. The result is an instance of the model grammar that 

implements the robotic system and is independent of the sensing 

devices used for perception and interaction. As a conclusion the 

Virtual Worlds Generator adds value in the simulation of virtual 

worlds since the definition can be done formally and 

independently of the peculiarities of the supporting devices. 

 

Keywords — Autonomous robots, virtual worlds, grammatical 

models, multimodal perception.  

 

I. INTRODUCTION 

utonomous robots are physical agents that perform tasks 

by navigating in an environment and by manipulating 

objects in it. To perform these tasks, they are equipped 

with effectors to act on the environment (wheels, joints, 

grippers...) and with sensors that can perceive it (cameras, 

sonars, lasers, gyroscopes...). It should be notice that, in 

general, the environment in which a robot operates may be 

inaccessible (it is not always possible to obtain all the 

information necessary for decision-making in every moment) 

non-deterministic (the effect of the action taken by the robot in 

the environment cannot be guaranteed), non-episodic (the 

action to be performed by the robot depends on the current 

perceptions and on the previous decisions), dynamic (the robot 

and the other elements in the environment may be constantly 

changing) and continuous (the location of the robot and the 

moving obstacles change in a continuous range of time and 

space) [8].  

The growing disparity of available sensors adds complexity 

to systems, but it also allows the control of robots to be more 

accurate. There are several reasons that support the use of a 

combination of different sensors to make a decision. For 

example, humans and other animals integrate multiple senses. 
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Various biological studies have shown that when the signals 

reach the superior colliculus converge to the same target area 

[9], which also receives signals from the cerebral cortex and 

causes the resulting behavior. A large majority of superior 

colliculus neurons are multisensory. There are other reasons of 

mathematical nature: combining multiple observations from 

the same source provides statistical advantages because some 

redundant observations are obtained for the same estimation. 

The concepts from biology can be extrapolated to the field 

of robotics. In fact, one of the current research fields that 

arouses most interest is the management of several inputs from 

different types, the so called multimodal data. 

Combining data from different sensors is an open field of 

research. In this sense, there are several concepts related to 

this subject that deals with the concept of multimodality from 

different points of view. Signhal and Brown [10] consider that 

two main processes may be performed from several 

multimodal inputs: multisensor fusion and multisensor 

integration. Multisensor integration refers to the synergistic 

use of the information provided by multiple sensory devices to 

assist in the accomplishment of a task by a system. Multisensor 

fusion refers to any stage in the integration process where there 

is actual combination (fusion) of different sources of sensory 

information into one representation format. Other authors 

describe the evidence that humans combine information 

following two general strategies: The first one is to maximize 

information delivered from the different sensory modalities 

(sensory combination). The second strategy is to reduce the 

variance in the sensory estimate to increase its reliability 

(sensory integration) [3]. Another example is set in [11]. They 

consider that, in general, multimodal integration is done for 

two reasons: sensory combination and sensory integration. 

Sensory combination describes interactions between sensory 

signals that are not redundant. That means crossmodal 

integration leads to increased information compared to single 

modalities. By contrast, sensory integration describes 

interactions between redundant signals. This leads to enhanced 

robustness and reliability of the derived information. 

In this paper we deal with the integration of multimodal 

inputs in the sense stated by Signhal and Brown [10], that is, 

the use of data of different nature for decision-making in high-

level tasks performed by a robot. However, the proposed 

system can also deal with the concept of fusion, defined as the 

combination of low-level redundant inputs for the cooperative 

construction of the complete information of the environment, 

reducing, as a consequence, the levels of uncertainty. 

Different architectures have been described for defining the 

behavior of a robot and the combination of sensory 
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information. A robotic control architecture should have the 

following properties: programmability, autonomy and 

adaptability, reactivity, consistent behavior, robustness and 

extensibility [4]. 

To achieve those requirements, most robot architectures try 

to combine reactive control and deliberative control. The 

reactive control is guided by sensors and it is suitable for low-

level decisions in real time. The deliberative control belongs to 

a higher level, so that global solutions can be obtained from 

the data collected by the sensors but also from information 

from an a priori model. They are, therefore, hybrid 

architectures. 

Hybrid architectures arise due to the problems and 

inconveniences of pure reactive approaches, such as the lack 

of planning, and of pure deliberative approaches, such as the 

slow reactions. An example of hybrid architecture is the PRS 

(Procedural Reasoning System). When the hybrid architectures 

face a problem, the deliberative mechanisms are used to design 

a plan to achieve an objective, while the reactive mechanisms 

are used to carry out the plan. The communications framework 

is the base that enables the necessary interaction between 

reactive and deliberative levels, by sending distributed sensory 

information to tasks at both levels and sending actions to 

actuators. Deliberative and reactive tasks can be structured in a 

natural way by means of independent software components 

[6]. 

An example of implementation is the model SWE (Sensor 

Web Enablement), which is applied to systems that are based 

on the use of sensors to obtain the information that is 

processed later [1]. In [7] an architecture based on models 

SWE and DDS (Data Distribution Service) is proposed. DDS 

is a general-purpose middleware standard designed 

specifically to satisfy the performance and Quality of Service 

(QoS) requirements of real-time systems. 

The Virtual Worlds Generator (VWG), our proposal, is a 

grammatical model, which integrates the diversity of 

interaction and sensing devices and the modules that make up 

a Graphics System (Graphics, Physics and AI engines). The 

scene definition is separated from the hardware-dependent 

characteristics of the system devices. It uses a grammar 

definition, which integrates activities, visualization and 

interaction with users. The hypothesis is that it can be used as 

a formal framework to model a robot navigation system, 

including several multimodal inputs, sensor fusion and 

integration, and behavior strategies. 

In section 2, the formal model for the VWG is presented. In 

section 3, the formal model is applied to construct a robotic 

system. Finally, some conclusions are presented in the last 

section. 

 

II. MODEL FOR VIRTUAL WORLDS GENERATION 

In the VWG model, a virtual world is described as an 

ordered sequence of primitives, transformations and actors. A 

primitive is the description of an object in a given 

representation system (typically, they are graphical primitives 

but they could also be sounds or any other primitive in a 

representation space). Transformations modify the behavior of 

primitives, and actors are the components that define the 

activities of the system in the virtual world. The actors may be 

finally displayed through primitives and transformations. To 

model the different actor’s activities, the concept of an event is 

used. Events cause the activation of a certain activity that can 

be processed by one or more actors. 

Each element in the scene is represented by a symbol from 

the set of symbols of the scene. The symbols make up strings 

that describe the scenes, in accordance with a language syntax, 

which is presented as a grammar [2]. 

 

A. Syntax 

A grammar M is a tuple M = <Σ, N, R, s >, where Σ is the 

finite set of terminal symbols, N is the finite set of non-

terminal symbols, R is the finite set of syntactic rules (a 

syntactic rule is an application r: N →W
*
, where W =Σ  N) 

and s  N is the initial symbol of the grammar. In our case, M 

is defined as: 

 

 Σ = P  T  O  A
D

ATTR, where: 

 P: set of symbols for primitives. 

 T: set of symbols for transformations. 

 O = {· ()}: symbols for indicating the scope () and 

the concatenation ·. 

 A
D

ATTR: set of symbols for actors, where D is the 

set of all the types of events generated by the 

system and ATTR is the set of all the attributes 

of actors, which define all the possible states. 

For example, the actor a
H

attr will carry out its 

activity when it receives an event e
h
, where h  

H, H  D and attr  ATTR is its current state. 

 N = {WORLD, OBJECTS, OBJECT, ACTOR, 

TRANSFORM, FIGURE}. 

 Grammar rules R are defined as: 

 Rule 1.  WORLD →OBJECTS 

 Rule 2.  OBJECTS → OBJECT | OBJECT · 

OBJECTS 

 Rule 3.  OBJECT→ FIGURE | 

TRANSFORMATION | ACTOR 

 Rule 4.  ACTOR→ a
H

attr , a
H

attr  AD
ATTR, H  D 

 Rule 5.  TRANSFORMATION → t(OBJECTS),    

t  T 

 Rule 6. FIGURE→ p+, p  P 

 s = WORLD is the initial symbol of the grammar. 

 

M is a context-free grammar. L(M) is the language 

generated by the grammar M: L(M) = {w  Σ
*
 | 

WORLD→
*
w}. 

 

B. Semantics 

Apart from the language syntax, it is necessary to define the 

semantics of L(M). It will be defined with a denotational 

method, that is, through mathematical functions. 
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1) Semantic Function of Primitives (Rule 6) 

Rule 6 defines a figure as a sequence of primitives. 

Primitive’s semantics is defined as a function α, as follows: 

 

P G    (1) 

 

Each symbol in the set P carries out a primitive on a given 

geometric system G. So, depending on the definition of the 

function α and on the geometry of G, the result of the system 

may be different. G represents the actions to be run on a 

specific visual or non-visual geometric system (e.g. the actions 

on OpenGL or on the system of a robot). The function α 

provides the abstraction needed to homogenize the different 

implementations of a rendering system. Therefore, only a 

descriptive string is needed to run the same scene on different 

systems. 

 

2) Semantic Functions of Transformations (Rule 5) 

In Rule 5, two functions are used to describe the semantics 

of a transformation, whose scope is limited by the symbols 

“()”:  

 
:

:

T G

T G








 (2) 

 

β represents the beginning of the transformation. It is carried 

out when the symbol “(” is processed. Function δ defines the 

end of the transformation which has previously been activated 

by the function β. It is run when the symbol “)” is found. These 

two functions have the same features that the function , but 

they are applied to the set of transformations T, using the same 

geometric system G. 

 

3) Semantic Functions of Actors (Rule 4) 

Rule 4 refers to actors, which are the dynamic part of the 

system. The semantics of the actor is a function that defines its 

evolution in time. For this reason, the semantic function is 

called evolution function λ and it is defined as  

 

: ( )D D

ATTRA E L M    (3) 

 

where E
D
 is the set of events for the set of all event types D. 

Some deeper aspects about events will be discussed later. 

 The function λ has a different expression depending on its 

evolution. However, a general expression can be defined. Let 

H = {h0, . . . ,hn}  D be the subset of event types which the 

actor a
H

ATTR is prepared to respond to. The general expression 

for λ is: 

 

 

0 0( )

,
( )

H h

ATTR

n n

H

ATTR

u L M if h h

a e
u L M if h h

a if h H



  



 
 

 

 (4) 

 

where u0, . . . ,un are strings of L(M). This equation means that 

an actor a
H

ATTR can evolve, that is, it is transformed into 

another string ui when it responds to an event e
h
 which the 

actor is prepared to respond to. However, the actor remains 

unchanged when it is not prepared to respond. 

As well as dynamic elements, actors can also have a 

representation in the geometric space G. To be displayed, an 

actor must be converted to a string of primitives and 

transformations. This visualization function is defined as: 

 

: ( ')D V

ATTRA E L M    (5) 

 

where V  D, E
V
  ED

 are events created in the visualization 

process, and L(M′) is a subset of the language L(M), made up 

of the strings with no actors. Let H ∩ V = {v0, . . . ,vn}  D be 

the subset of visual event types which the actor a
H

ATTR is 

prepared to respond to. The expression of Ө is defined as: 

 

 

0 0( ')

,
( ')

H v

ATTR

n n

z L M if v v

a e
z L M if v v

if v H V





 



 
 

  

 (6) 

 

 

4) Semantic Functions of OBJECT, OBJECTS and WORLD 

(Rules 1, 2 and 3) 

 The semantic function of Rules 1, 2, and 3 breaks down the 

strings and converts them into substrings, executing the so 

called algorithm of the system, which performs the complete 

evolution of the system and displays it in the current geometric 

system. It performs several actions, which are described in the 

following paragraphs. 

To display the scene on the geometric system G, the 

function φ is defined, for the set of symbols that can directly 

be displayed: primitives and transformations. Given a string w 

 L(M) and using only symbols of P and T, φ is defined as: 

 

 

( )

( ); ( ); ( ) ( ) ( )

( ); ( ) · , ( )

w if w P

w t v t if w t v v L M t T

u v if w u v u v L M



   

 




     
   

 (7) 

In the case of strings including both displayable elements, 

and actors, two functions must be defined. The first one is the 

so called function of the system evolution η, which requires a 

sequence of sorted events S = e
1
 · e

2
 . . .e

n
, where every e

i
  ED

 

and a string of L(M) including actors, and implements a set of 

recursive calls to the function λ to perform the evolution of all 

the actors in the system at a given frame: 

 

 
( ( , )) ( )

,
( , )

·( , )· ( , )

i

HH i

attrattre S

w if w P

t v S if w t v
w S

if w aa e

if w u vu S v S






 



 

 

 


 




 (8) 

 

The operator ΠeiS λ (a
H

attr , ei) concatenates the strings of 

the function λ.  
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The actors to be displayed in the system must be converted 

to displayable elements, that is, primitives and transformations. 

The second function, returns a string of the language L(M′) 

given a string w  L(M) and a sequence of ordered 

visualization events S′ = e
1
 · e

2
 . . . e

n
, where every e

i
 E

V
 and 

S′  S. This function is called function of system visualization 

π and it is defined as: 

 

 
( ( , ')) ( )

,
( , )

·( , ')· ( , ')

i

HH i

ATTRATTRe S

w if w P

t v S if w t v
w S

if w aa e

if w u vu S v S






 



 

 

 


 




 (9) 

 

 

C. Events and Generators 

The events are the mechanism to model the activity in the 

system. The actors’ activity is carried out when a certain type 

of event is produced. The following event definition is 

established: e
d
c  is defined as an event of type d D with data 

c. 

A new function called event generator is defined as: Let 

C
d
(t) be a function which creates a sequence of ordered events 

of type d at the time instant t, where d  D and D is the set of 

event types which can be generated by the system. This 

function is:  

 
*: ( )d DC Time E  (10) 

 

In the previous definition, it should be noticed that events 

are generated in the time instant t. It is due to synchronization 

purpose. The event generator can generate several or no events 

at a given moment. 

Different event generators can create the same type of 

events. So, a priority order among event generators must be 

established to avoid ambiguities. Given two generators Ci and 

Cj which create the same event, if i < j, then the events 

generated by Ci will have a higher priority. 

 

D. System Algorithm 

Once all the elements involved in the model have been 

defined, the System Algorithm can be established. It defines 

the system evolution and its visualization at every time instant  

t or frame: 

 

1)  w = w0 ; t = 0 

2)  while w ≠ ε do 

- S = collect events from generators C* in order of priority. 

- Z = extract visual events from S. 

- wnext = η(w, S) 

- v = π (w, Z) ; g = φ(v) 

- w = wnext ; t = t +1 

 3)  end while 

 

where w0 is the initial string, C
*
 = {All the event generators 

which generate events of type D}, D = {Set of all the types of 

possible events in the system}, g is the output device, S is a 

sequence of all the events generated by the system at instant t, 

Z is a subsequence of S, and it includes all the events from 

visual devices. These events are the input of the visual 

algorithm π. 

A diagram of the virtual world generation algorithm is shown 

in Fig. 1. 

 

 
Fig. 1. Virtual world generator algorithm. 

 

This formalization of the system has two main consequences. 

First, the scene definition is separated from the hardware- 

dependent characteristics of components. The functions α, β 

and δ provide the independence from the visualization system, 

and the event generators provide the independence from the 

hardware input devices. Secondly, due to the fact that there is a 

specific scheme to define the features of a system, the different 

system elements can be reused easily in other areas of 

application. 

 

III. CASE STUDY 

A. Description 

Let us consider a robot with several sensors that provide 

information about the environment. It is programmed to 

autonomously navigate in a known environment, and to 

transport objects from one place to another. The input data are: 

the data from a range sensor (e.g. a laser to detect obstacles 

and distances), the image from a camera to identify objects and 

places using markers, an internal representation of the 

environment (a map) and a human supervisor who is 

controlling the robot (he can give some high level instructions, 

such as interrupt the current task or begin a new task). The 

information is combined using a multimodal algorithm based 

on priorities, so that the robot can attend to the users’ request, 

select the best way to follow to the destination and use the 

sensors to detect and avoid obstacles, as well as to identify the 

objects and the places. 

A system like this can be modeled using a classical hybrid 

scheme (Fig. 2), based on the combination of a reactive system 
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and a proactive system. This hybrid scheme can be adapted 

using the VWG introduced in the previous section. 

 

 
Fig. 2.  Hybrid scheme for a robotic system. 

 

In this picture the world is the real environment. The world 

model is a map containing the static elements of the 

environment. The reactive system is made of several 

generators, for the sensors and for the user’s orders. The 

proactive system is the AI of the robot. The robot is the only 

actor in the system. The current state is the set of robot 

attributes. The multisensorial integration process is the 

evolution function of the robot. The final action is the result of 

the process of sensor integration and the final action carried 

out by the robot. 

B. Primitives and Transformations 

As it was stated in section 2, primitives are the description 

of objects in the space of representation, and transformations 

are used to modify primitives. In our robotic system, only one 

primitive is needed, the robot, and it is modified by two 

possible transformations: move and rotate (table I). When the 

system is executed in a real environment, the robot primitive 

represents the real robot and the transformations correspond to 

the actual operations performed by the robot. If it is executed 

in a simulator, the primitive and the transformations will 

represent the operations carried out in the simulated robot, that 

is, the operations in the graphics system (GS). The operations 

are performed by the semantic functions α for the primitives 

and β and  for the transformations. 

 
TABLE I 

PRIMITIVES AND TRANSFORMATIONS OF THE ROBOTIC SYSTEM 

 Real Environment  Simulator 

PRobot  No action Draw the robot in the 

GS 

TMove<dist> Move a distance dist Move a distance dist in 

the GS 

TRotate<angle>  Rotate an angle angle  Rotate an angle angle 

in the GS 

 

C. Events and Generators 

Events are used to define the activity in the system. Each 

event is defined by its identifier and some attributes. They 

produce changes on the actors through their evolution 

functions. These events are produced by generators. There is a 

generator for each event type. In the robotic system, five 

generators are needed: 

 gLaser: It generates an eLaser event when the laser 

detects an obstacle, by obtaining the laser data and 

processing them to find the possible obstacles.  

 gCamera: It generates an eCamera event when a 

marker is detected in the camera image. Markers are 

used to identify the rooms in the environment. 

 gDecide: It generates an eDecide event each frame to 

indicate to the robot to make a decision.  

 gExecute: It generates an eExecute event to indicate the 

system to execute the robot actions in the current 

representation space. If the representation space is the 

real environment, the real operations will take place 

(move the robot, rotate the robot...). If the current space 

is the simulator, the operations will take place in the 

graphics system.  

 gObjective: It generates an eObjective event to set a 

new objective marker. This generator is connected to 

the users’ orders. Users can specify a new target room 

simply by selecting its associated marker.  

The generators in our system and their associated events are 

shown in table II.  

 

 
TABLE II 

GENERATORS AND EVENTS OF THE ROBOTIC SYSTEM 

Generator and Events Description Associated data 

gLaser = 

eLaser<dist,angle> if 

obstacle 

Event produced when the 

laser detects an obstacle 

dist: disntace to 

the obstacle 

angle: angle to 

the obstacle 

gCamera = 

eCamera<marker> if 

marker 

Event produced when the 

camera detects a marker 

marker: detected 

marker 

gDecide = eDecide 

each frame 

Event generated each 

frame to indicate to the 

robot to make a decision 

No data 

gExecute = eExecute 

each frame 

It runs the robot action in 

the real environment or in 

the simulator 

No data 

gObjective = 

eObjective<marker> if 

user order 

Event produced by the 

user to set the objective 

marker  

marker: 

objective marker 

 

An order relation must be defined to establish an execution 

priority among generators. In the robotic system, the order 

relation is: gLaser, gCamera, gObjective, gDecide, gExecute. 

Therefore, events related with the acquisition of data have the 

highest priority, compared with the events of decision and 

execution. 
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D. Actors 

The only actor in our robotic system is the robot, which is 

defined as: 

 
, , , ,

, , , , ,

eLaser eCamera eDecide eExecute eObjective

grid row column angle objective actionARobot 
 (11) 

 

where the superscript are the events which it is prepared to 

respond to, and the subscript are the attributes, whose 

meanings are: the grid represents the environment where the 

robot moves in. Each cell stores the registered data obtained 

from the sensors (the detected obstacles and markers). Row 

and column are the position occupied by the robot in the grid. 

Angle is the robot orientation. Objective is the objective room, 

represented by its marker. And action is the string of 

primitives and transformations that indicates the next 

command to be executed by the robot. To simplify, in the 

following equations this actor will be referred as 

ARobot
E

<g,r,c,an,o,ac>. 

 

The evolution function is, probably, the most important 

element in the system, as it defines the way the robot behaves 

in the environment, that is, it defines the artificial intelligence 

of the robotic system. Let e be an event that is received by the 

actor, the evolution function is defined as: 

 

, , , , ,

', , , , , ,

', , , , ,

, ', ', ', , '

, , , , ,

,

( , )

( )

E

g r c an o ac

E

g r c an o ac dist angle

E

g r c an o ac marker

E

g r c an o ac

E

g r c an o ac

g r

ARobot e

ARobot if e eLaser

ARobot if e eCamera

ARobot if e eDecide

ARobot if e eExecute

ARobot





 

   

   

 

 














, , , ',

, , , , ,

E

c an o ac marker

E

g r c an o ac

if e eObjective

ARobot otherwise

  

 







 



 (12) 

 

where the symbol apostrophe (’) on an attribute indicates that 

it has changed as a consequence of the received event. The 

way the attributes change is the following: 

 If e = eLaser<dist,angle>, the grid (g) must be updated to 

indicate that an obstacle has been detected. The cell to 

mark is the one in position (r + dist cos(ang + angle), c 

+ dist sin(ang + angle)). 

 If e = eCamera<marker>, the grid (g) must be updated to 

indicate that a marker has been detected. The cell to 

mark is (r + dist cos(ang), c + dist sin(ang)). 

 If e = eDecide, the current position and orientation of 

the robot (row r, column c and angle ang), must be 

updated, as well as the actions to be executed. This 

function is very important, as it provides the behavior 

of the robot. In the following section, the way to 

introduce intelligent behaviors will be shown. 

 If e = eExecute, the actions of the robot must be 

executed in the representation space, through the use of 

the α function. 

 If e = eOb jective<marker>, a new objective has been set 

by the user, so the objective (o) must be changed to the 

new one (marker). 

 In any other case, the actor must remain unchanged. 

 

E. Initial string 

The initial string in our systems defined as:  

 
, , , ,

, , , , ,

eLaser eCamera eDecide eExecute eObjective

grid row column angleARobot   
 (13) 

 

where the attribute grid is initialized to a set of empty cells, the 

attributes row, column and angle are the initial position and 

orientation, and the objective and the action are empty. 

 

F. Analysis 

A set of tests has been designed to prove the features of our 

model. Specifically, five tests have been carried out. 

 

1) Test of the evolution function 

As it was stated before, the evolution function is the way of 

introducing intelligent behaviors in an actor. Therefore, the 

aim of this test is to prove the suitability of the evolution 

function to introduce new AI algorithms. This test is not to 

obtain the best AI algorithm to achieve the goal, but to prove 

that a new intelligent behavior can be introduced by just 

changing the evolution function. An important question is 

guaranteeing the same conditions for all the experiments, so 

the AI algorithms are introduced with no other modification in 

other parts of the system. 

Two simple decision algorithms have been used to decide 

how the robot should move in the world. The first algorithm 

makes decisions randomly to find the target position. The 

second one is the A
*
 algorithm [5], considering the Euclidean 

distance to the goal as the weights. If there is an obstacle the 

distance is defined as infinite. 

 

2) Test of device independence 

One of the main features of our model is that the system 

definition is independent from the input devices. The aim of 

this test is to prove that the input devices can be replaced 

without changing the definition of the string representing the 

system.  

In our original system, a laser range sensor was used to 

detect obstacles. In this test, a Kinect device is introduced. To 

add this new device, we have just designed a new event 

generator (gKinect) that creates events of the same type that 

the ones generated by the laser generator. That is, it provides 

the same information: the angle and the distance to the 

obstacle. The new device is then introduced with no other 

modification in the system. The Kinect is then used to replace 

the laser device or to obtain redundant information for the 

detection of obstacles. 

 

3) Test to validate the simulation 

The most important achievement in the proposed model is 

the fact that the description for the simulation and for the real 

robot is exactly the same. That is, the command execution for 

the simulated robot can be directly used for the real robot with 

no change in the string that represents the system. 
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To achieve this goal, two generators for the execution of the 

robot commands have been implemented: one for the real 

robot and one for the robot simulation. This way, the 

commands are transparently executed no matter whether the 

robot is real or simulated, just using the appropriate generator. 

As a result, the navigation would be exactly the same for the 

simulated robot and for the real one, if there were not 

odometry errors. A good way to improve the simulation is 

introducing some odometry errors in the motors and in the 

sensor signals, accordingly with the features of the real robot. 

 

4) Test of the system extensibility 

The proposed model is, by definition, easily extensible. The 

updating of the definition string supposes the extension of the 

model and the addition of new features. Moreover, most 

elements can be reused in new definition strings to obtain new 

behaviors with little effort. 

In our case, new instances of the actor symbols (representing 

robots) have been added to the definition string to extend the 

system in an almost immediate way and to create a multi-robot 

system. 

 

5) Test of changes in the environment 

A desired capability in a robot navigation system is, 

obviously, to be flexible enough to work under very different 

conditions. To prove this feature, the system has been tested 

with different maps (Fig. 3, 4 and 5), in the case of the 

simulated robot, and in different real environments, in the case 

of the real robot. 

 

  
 

Fig. 3. Example map in 2D. 

  

 
 

Fig. 4. Example map in 2D. 

 

 
 

Fig. 5. Example map in 3D 

 

IV. CONCLUSIONS 

A new model to formally define virtual worlds, 

independently from the underlying physical layer, has been 

presented. Is has been used to model the control of a mobile 

robot, navigating in a given environment, and using a set of 

multimodal inputs from different types of sensors. 

The model is based on a grammar which consists, on the 

one hand, of symbols to abstract and represent the elements of 

the system (primitives, actors, and so on) and, on the other 

hand, of a set of evolution functions so that all these elements 

can be combined in different ways leading to an infinite set of 

possible strings belonging to the grammar. By definition, each 

string has the ability to represent the interaction between the 

elements (symbols) of the system and their state at any given 

instant. By extension, these strings can also synthesize and 

formally define the system state. 

As in other systems for modeling virtual worlds, the event 

and, in particular, the occurrence thereof, can bring about a 
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change in the state of a particular element and, in general, a 

change in the state of the system. Within the model, the event 

generators are responsible for managing all the possible events 

associated with the elements of the system. 

The result of the events, namely the transition between 

states, involves an evolution of the original string of the system 

to another evolved string, which is obtained from the 

application of certain rules on the first string. These rules are 

defined within the actors, which contain the logic of how to act 

and deal with an event if it is activated. The main restriction to 

design the rules is that they should be able to translate the 

consequence of the events into grammar rules. The grammar 

rules must be applicable to the symbols of the state string and 

the outcome of the rules application must return a consistent 

string, syntactically and semantically possible. 

The evolution function of the actors can be as complex as 

needed. In fact, this function is the vehicle to introduce 

intelligent behaviors in the system. This way, artificial 

intelligence algorithms can be introduced into the evolution 

function of the actor to provide it with the needed behavior. 

Taking into account the diversity of virtual worlds systems 

available nowadays and the wide variety of devices, this model 

seems to be able to provide interesting features. Firstly, it is a 

formal model based on a grammar that allows abstracting and 

representing the states of the system in a general way by 

avoiding the specific features of other existing systems. The 

use of strings facilitates the parallelization and optimization of 

the system processes. It is also a device-independent model, 

therefore, is not linked to the implementation of the system 

with a given set of devices. It also allows the replacement of 

physical devices by simulated ones, and the easy addition of 

new ones. For instance, in the case of our robotic system, the 

definition string of the system is exactly the same for the 

simulator and for the real robot. Finally, it is a flexible model 

since it contemplates the possibility of reinterpreting the 

outputs of the actions. 

In conclusion, it has been achieved the main objective of 

defining a new formal and generic model that is able to model 

general virtual worlds systems by avoiding the specific 

peculiarities of other models existing today.  
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