
Special Issue on Distributed Computing and Artificial Intelligence

-30-



Abstract — Virtual Worlds Generator is a grammatical model

that is proposed to define virtual worlds. It integrates the

diversity of sensors and interaction devices, multimodality and a

virtual simulation system. Its grammar allows the definition and

abstraction in symbols strings of the scenes of the virtual world,

independently of the hardware that is used to represent the world

or to interact with it. A case study is presented to explain how to

use the proposed model to formalize a robot navigation system

with multimodal perception and a hybrid control scheme of the

robot. The result is an instance of the model grammar that

implements the robotic system and is independent of the sensing

devices used for perception and interaction. As a conclusion the

Virtual Worlds Generator adds value in the simulation of virtual

worlds since the definition can be done formally and

independently of the peculiarities of the supporting devices.

Keywords — Autonomous robots, virtual worlds, grammatical

models, multimodal perception.

I. INTRODUCTION

utonomous robots are physical agents that perform tasks

by navigating in an environment and by manipulating

objects in it. To perform these tasks, they are equipped

with effectors to act on the environment (wheels, joints,

grippers...) and with sensors that can perceive it (cameras,

sonars, lasers, gyroscopes...). It should be notice that, in

general, the environment in which a robot operates may be

inaccessible (it is not always possible to obtain all the

information necessary for decision-making in every moment)

non-deterministic (the effect of the action taken by the robot in

the environment cannot be guaranteed), non-episodic (the

action to be performed by the robot depends on the current

perceptions and on the previous decisions), dynamic (the robot

and the other elements in the environment may be constantly

changing) and continuous (the location of the robot and the

moving obstacles change in a continuous range of time and

space) [8].

The growing disparity of available sensors adds complexity

to systems, but it also allows the control of robots to be more

accurate. There are several reasons that support the use of a

combination of different sensors to make a decision. For

example, humans and other animals integrate multiple senses.

Gabriel López-García, A. Javier Gallego-Sánchez (corresponding author), J.

Luis Dalmau-Espert, Rafael Molina-Carmona and Patricia Compañ-Rosique

are in the Group of Industrial Computing and Artificial Intelligence,

University of Alicante, Ap. 99, 03080 Alicante, Spain (e-mail: [glopez,

ajgallego, jldalmau, rmolina, patricia]@dccia.ua.es).

Various biological studies have shown that when the signals

reach the superior colliculus converge to the same target area

[9], which also receives signals from the cerebral cortex and

causes the resulting behavior. A large majority of superior

colliculus neurons are multisensory. There are other reasons of

mathematical nature: combining multiple observations from

the same source provides statistical advantages because some

redundant observations are obtained for the same estimation.

The concepts from biology can be extrapolated to the field

of robotics. In fact, one of the current research fields that

arouses most interest is the management of several inputs from

different types, the so called multimodal data.

Combining data from different sensors is an open field of

research. In this sense, there are several concepts related to

this subject that deals with the concept of multimodality from

different points of view. Signhal and Brown [10] consider that

two main processes may be performed from several

multimodal inputs: multisensor fusion and multisensor

integration. Multisensor integration refers to the synergistic

use of the information provided by multiple sensory devices to

assist in the accomplishment of a task by a system. Multisensor

fusion refers to any stage in the integration process where there

is actual combination (fusion) of different sources of sensory

information into one representation format. Other authors

describe the evidence that humans combine information

following two general strategies: The first one is to maximize

information delivered from the different sensory modalities

(sensory combination). The second strategy is to reduce the

variance in the sensory estimate to increase its reliability

(sensory integration) [3]. Another example is set in [11]. They

consider that, in general, multimodal integration is done for

two reasons: sensory combination and sensory integration.

Sensory combination describes interactions between sensory

signals that are not redundant. That means crossmodal

integration leads to increased information compared to single

modalities. By contrast, sensory integration describes

interactions between redundant signals. This leads to enhanced

robustness and reliability of the derived information.

In this paper we deal with the integration of multimodal

inputs in the sense stated by Signhal and Brown [10], that is,

the use of data of different nature for decision-making in high-

level tasks performed by a robot. However, the proposed

system can also deal with the concept of fusion, defined as the

combination of low-level redundant inputs for the cooperative

construction of the complete information of the environment,

reducing, as a consequence, the levels of uncertainty.

Different architectures have been described for defining the

behavior of a robot and the combination of sensory

A Grammatical Approach to the Modeling of an

Autonomous Robot

Gabriel López-García, A. Javier Gallego-Sánchez, J. Luis Dalmau-Espert, Rafael Molina-Carmona

and Patricia Compañ-Rosique

A

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 5.

-31-

information. A robotic control architecture should have the

following properties: programmability, autonomy and

adaptability, reactivity, consistent behavior, robustness and

extensibility [4].

To achieve those requirements, most robot architectures try

to combine reactive control and deliberative control. The

reactive control is guided by sensors and it is suitable for low-

level decisions in real time. The deliberative control belongs to

a higher level, so that global solutions can be obtained from

the data collected by the sensors but also from information

from an a priori model. They are, therefore, hybrid

architectures.

Hybrid architectures arise due to the problems and

inconveniences of pure reactive approaches, such as the lack

of planning, and of pure deliberative approaches, such as the

slow reactions. An example of hybrid architecture is the PRS

(Procedural Reasoning System). When the hybrid architectures

face a problem, the deliberative mechanisms are used to design

a plan to achieve an objective, while the reactive mechanisms

are used to carry out the plan. The communications framework

is the base that enables the necessary interaction between

reactive and deliberative levels, by sending distributed sensory

information to tasks at both levels and sending actions to

actuators. Deliberative and reactive tasks can be structured in a

natural way by means of independent software components

[6].

An example of implementation is the model SWE (Sensor

Web Enablement), which is applied to systems that are based

on the use of sensors to obtain the information that is

processed later [1]. In [7] an architecture based on models

SWE and DDS (Data Distribution Service) is proposed. DDS

is a general-purpose middleware standard designed

specifically to satisfy the performance and Quality of Service

(QoS) requirements of real-time systems.

The Virtual Worlds Generator (VWG), our proposal, is a

grammatical model, which integrates the diversity of

interaction and sensing devices and the modules that make up

a Graphics System (Graphics, Physics and AI engines). The

scene definition is separated from the hardware-dependent

characteristics of the system devices. It uses a grammar

definition, which integrates activities, visualization and

interaction with users. The hypothesis is that it can be used as

a formal framework to model a robot navigation system,

including several multimodal inputs, sensor fusion and

integration, and behavior strategies.

In section 2, the formal model for the VWG is presented. In

section 3, the formal model is applied to construct a robotic

system. Finally, some conclusions are presented in the last

section.

II. MODEL FOR VIRTUAL WORLDS GENERATION

In the VWG model, a virtual world is described as an

ordered sequence of primitives, transformations and actors. A

primitive is the description of an object in a given

representation system (typically, they are graphical primitives

but they could also be sounds or any other primitive in a

representation space). Transformations modify the behavior of

primitives, and actors are the components that define the

activities of the system in the virtual world. The actors may be

finally displayed through primitives and transformations. To

model the different actor’s activities, the concept of an event is

used. Events cause the activation of a certain activity that can

be processed by one or more actors.

Each element in the scene is represented by a symbol from

the set of symbols of the scene. The symbols make up strings

that describe the scenes, in accordance with a language syntax,

which is presented as a grammar [2].

A. Syntax

A grammar M is a tuple M = <Σ, N, R, s >, where Σ is the

finite set of terminal symbols, N is the finite set of non-

terminal symbols, R is the finite set of syntactic rules (a

syntactic rule is an application r: N →W
*
, where W =Σ  N)

and s  N is the initial symbol of the grammar. In our case, M

is defined as:

 Σ = P  T  O  A
D

ATTR, where:

 P: set of symbols for primitives.

 T: set of symbols for transformations.

 O = {· ()}: symbols for indicating the scope () and

the concatenation ·.

 A
D

ATTR: set of symbols for actors, where D is the

set of all the types of events generated by the

system and ATTR is the set of all the attributes

of actors, which define all the possible states.

For example, the actor a
H

attr will carry out its

activity when it receives an event e
h
, where h 

H, H  D and attr  ATTR is its current state.

 N = {WORLD, OBJECTS, OBJECT, ACTOR,

TRANSFORM, FIGURE}.

 Grammar rules R are defined as:

 Rule 1. WORLD →OBJECTS

 Rule 2. OBJECTS → OBJECT | OBJECT ·

OBJECTS

 Rule 3. OBJECT→ FIGURE |

TRANSFORMATION | ACTOR

 Rule 4. ACTOR→ a
H

attr , a
H

attr  AD
ATTR, H  D

 Rule 5. TRANSFORMATION → t(OBJECTS),

t  T

 Rule 6. FIGURE→ p+, p  P

 s = WORLD is the initial symbol of the grammar.

M is a context-free grammar. L(M) is the language

generated by the grammar M: L(M) = {w  Σ
*
 |

WORLD→
*
w}.

B. Semantics

Apart from the language syntax, it is necessary to define the

semantics of L(M). It will be defined with a denotational

method, that is, through mathematical functions.

Special Issue on Distributed Computing and Artificial Intelligence

-32-

1) Semantic Function of Primitives (Rule 6)

Rule 6 defines a figure as a sequence of primitives.

Primitive’s semantics is defined as a function α, as follows:

P G   (1)

Each symbol in the set P carries out a primitive on a given

geometric system G. So, depending on the definition of the

function α and on the geometry of G, the result of the system

may be different. G represents the actions to be run on a

specific visual or non-visual geometric system (e.g. the actions

on OpenGL or on the system of a robot). The function α

provides the abstraction needed to homogenize the different

implementations of a rendering system. Therefore, only a

descriptive string is needed to run the same scene on different

systems.

2) Semantic Functions of Transformations (Rule 5)

In Rule 5, two functions are used to describe the semantics

of a transformation, whose scope is limited by the symbols

“()”:

:

:

T G

T G








 (2)

β represents the beginning of the transformation. It is carried

out when the symbol “(” is processed. Function δ defines the

end of the transformation which has previously been activated

by the function β. It is run when the symbol “)” is found. These

two functions have the same features that the function , but

they are applied to the set of transformations T, using the same

geometric system G.

3) Semantic Functions of Actors (Rule 4)

Rule 4 refers to actors, which are the dynamic part of the

system. The semantics of the actor is a function that defines its

evolution in time. For this reason, the semantic function is

called evolution function λ and it is defined as

: ()D D

ATTRA E L M   (3)

where E
D
 is the set of events for the set of all event types D.

Some deeper aspects about events will be discussed later.

 The function λ has a different expression depending on its

evolution. However, a general expression can be defined. Let

H = {h0, . . . ,hn}  D be the subset of event types which the

actor a
H

ATTR is prepared to respond to. The general expression

for λ is:

 

0 0()

,
()

H h

ATTR

n n

H

ATTR

u L M if h h

a e
u L M if h h

a if h H



  



 
 

 

 (4)

where u0, . . . ,un are strings of L(M). This equation means that

an actor a
H

ATTR can evolve, that is, it is transformed into

another string ui when it responds to an event e
h
 which the

actor is prepared to respond to. However, the actor remains

unchanged when it is not prepared to respond.

As well as dynamic elements, actors can also have a

representation in the geometric space G. To be displayed, an

actor must be converted to a string of primitives and

transformations. This visualization function is defined as:

: (')D V

ATTRA E L M   (5)

where V  D, E
V
  ED

 are events created in the visualization

process, and L(M′) is a subset of the language L(M), made up

of the strings with no actors. Let H ∩ V = {v0, . . . ,vn}  D be

the subset of visual event types which the actor a
H

ATTR is

prepared to respond to. The expression of Ө is defined as:

 

0 0(')

,
(')

H v

ATTR

n n

z L M if v v

a e
z L M if v v

if v H V





 



 
 

  

 (6)

4) Semantic Functions of OBJECT, OBJECTS and WORLD

(Rules 1, 2 and 3)

 The semantic function of Rules 1, 2, and 3 breaks down the

strings and converts them into substrings, executing the so

called algorithm of the system, which performs the complete

evolution of the system and displays it in the current geometric

system. It performs several actions, which are described in the

following paragraphs.

To display the scene on the geometric system G, the

function φ is defined, for the set of symbols that can directly

be displayed: primitives and transformations. Given a string w

 L(M) and using only symbols of P and T, φ is defined as:

 

()

(); (); () () ()

(); () · , ()

w if w P

w t v t if w t v v L M t T

u v if w u v u v L M



   

 




     
   

 (7)

In the case of strings including both displayable elements,

and actors, two functions must be defined. The first one is the

so called function of the system evolution η, which requires a

sequence of sorted events S = e
1
 · e

2
 . . .e

n
, where every e

i
  ED

and a string of L(M) including actors, and implements a set of

recursive calls to the function λ to perform the evolution of all

the actors in the system at a given frame:

 
((,)) ()

,
(,)

·(,)· (,)

i

HH i

attrattre S

w if w P

t v S if w t v
w S

if w aa e

if w u vu S v S






 



 

 

 


 




 (8)

The operator ΠeiS λ (a
H

attr , ei) concatenates the strings of

the function λ.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 5.

-33-

The actors to be displayed in the system must be converted

to displayable elements, that is, primitives and transformations.

The second function, returns a string of the language L(M′)

given a string w  L(M) and a sequence of ordered

visualization events S′ = e
1
 · e

2
 . . . e

n
, where every e

i
 E

V
 and

S′  S. This function is called function of system visualization

π and it is defined as:

 
((, ')) ()

,
(,)

·(, ')· (, ')

i

HH i

ATTRATTRe S

w if w P

t v S if w t v
w S

if w aa e

if w u vu S v S






 



 

 

 


 




 (9)

C. Events and Generators

The events are the mechanism to model the activity in the

system. The actors’ activity is carried out when a certain type

of event is produced. The following event definition is

established: e
d
c is defined as an event of type d D with data

c.

A new function called event generator is defined as: Let

C
d
(t) be a function which creates a sequence of ordered events

of type d at the time instant t, where d  D and D is the set of

event types which can be generated by the system. This

function is:

*: ()d DC Time E (10)

In the previous definition, it should be noticed that events

are generated in the time instant t. It is due to synchronization

purpose. The event generator can generate several or no events

at a given moment.

Different event generators can create the same type of

events. So, a priority order among event generators must be

established to avoid ambiguities. Given two generators Ci and

Cj which create the same event, if i < j, then the events

generated by Ci will have a higher priority.

D. System Algorithm

Once all the elements involved in the model have been

defined, the System Algorithm can be established. It defines

the system evolution and its visualization at every time instant

t or frame:

1) w = w0 ; t = 0

2) while w ≠ ε do

- S = collect events from generators C* in order of priority.

- Z = extract visual events from S.

- wnext = η(w, S)

- v = π (w, Z) ; g = φ(v)

- w = wnext ; t = t +1

 3) end while

where w0 is the initial string, C
*
 = {All the event generators

which generate events of type D}, D = {Set of all the types of

possible events in the system}, g is the output device, S is a

sequence of all the events generated by the system at instant t,

Z is a subsequence of S, and it includes all the events from

visual devices. These events are the input of the visual

algorithm π.

A diagram of the virtual world generation algorithm is shown

in Fig. 1.

Fig. 1. Virtual world generator algorithm.

This formalization of the system has two main consequences.

First, the scene definition is separated from the hardware-

dependent characteristics of components. The functions α, β

and δ provide the independence from the visualization system,

and the event generators provide the independence from the

hardware input devices. Secondly, due to the fact that there is a

specific scheme to define the features of a system, the different

system elements can be reused easily in other areas of

application.

III. CASE STUDY

A. Description

Let us consider a robot with several sensors that provide

information about the environment. It is programmed to

autonomously navigate in a known environment, and to

transport objects from one place to another. The input data are:

the data from a range sensor (e.g. a laser to detect obstacles

and distances), the image from a camera to identify objects and

places using markers, an internal representation of the

environment (a map) and a human supervisor who is

controlling the robot (he can give some high level instructions,

such as interrupt the current task or begin a new task). The

information is combined using a multimodal algorithm based

on priorities, so that the robot can attend to the users’ request,

select the best way to follow to the destination and use the

sensors to detect and avoid obstacles, as well as to identify the

objects and the places.

A system like this can be modeled using a classical hybrid

scheme (Fig. 2), based on the combination of a reactive system

Special Issue on Distributed Computing and Artificial Intelligence

-34-

and a proactive system. This hybrid scheme can be adapted

using the VWG introduced in the previous section.

Fig. 2. Hybrid scheme for a robotic system.

In this picture the world is the real environment. The world

model is a map containing the static elements of the

environment. The reactive system is made of several

generators, for the sensors and for the user’s orders. The

proactive system is the AI of the robot. The robot is the only

actor in the system. The current state is the set of robot

attributes. The multisensorial integration process is the

evolution function of the robot. The final action is the result of

the process of sensor integration and the final action carried

out by the robot.

B. Primitives and Transformations

As it was stated in section 2, primitives are the description

of objects in the space of representation, and transformations

are used to modify primitives. In our robotic system, only one

primitive is needed, the robot, and it is modified by two

possible transformations: move and rotate (table I). When the

system is executed in a real environment, the robot primitive

represents the real robot and the transformations correspond to

the actual operations performed by the robot. If it is executed

in a simulator, the primitive and the transformations will

represent the operations carried out in the simulated robot, that

is, the operations in the graphics system (GS). The operations

are performed by the semantic functions α for the primitives

and β and  for the transformations.

TABLE I

PRIMITIVES AND TRANSFORMATIONS OF THE ROBOTIC SYSTEM

 Real Environment Simulator

PRobot No action Draw the robot in the

GS

TMove<dist> Move a distance dist Move a distance dist in

the GS

TRotate<angle> Rotate an angle angle Rotate an angle angle

in the GS

C. Events and Generators

Events are used to define the activity in the system. Each

event is defined by its identifier and some attributes. They

produce changes on the actors through their evolution

functions. These events are produced by generators. There is a

generator for each event type. In the robotic system, five

generators are needed:

 gLaser: It generates an eLaser event when the laser

detects an obstacle, by obtaining the laser data and

processing them to find the possible obstacles.

 gCamera: It generates an eCamera event when a

marker is detected in the camera image. Markers are

used to identify the rooms in the environment.

 gDecide: It generates an eDecide event each frame to

indicate to the robot to make a decision.

 gExecute: It generates an eExecute event to indicate the

system to execute the robot actions in the current

representation space. If the representation space is the

real environment, the real operations will take place

(move the robot, rotate the robot...). If the current space

is the simulator, the operations will take place in the

graphics system.

 gObjective: It generates an eObjective event to set a

new objective marker. This generator is connected to

the users’ orders. Users can specify a new target room

simply by selecting its associated marker.

The generators in our system and their associated events are

shown in table II.

TABLE II

GENERATORS AND EVENTS OF THE ROBOTIC SYSTEM

Generator and Events Description Associated data

gLaser =

eLaser<dist,angle> if

obstacle

Event produced when the

laser detects an obstacle

dist: disntace to

the obstacle

angle: angle to

the obstacle

gCamera =

eCamera<marker> if

marker

Event produced when the

camera detects a marker

marker: detected

marker

gDecide = eDecide

each frame

Event generated each

frame to indicate to the

robot to make a decision

No data

gExecute = eExecute

each frame

It runs the robot action in

the real environment or in

the simulator

No data

gObjective =

eObjective<marker> if

user order

Event produced by the

user to set the objective

marker

marker:

objective marker

An order relation must be defined to establish an execution

priority among generators. In the robotic system, the order

relation is: gLaser, gCamera, gObjective, gDecide, gExecute.

Therefore, events related with the acquisition of data have the

highest priority, compared with the events of decision and

execution.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 5.

-35-

D. Actors

The only actor in our robotic system is the robot, which is

defined as:

, , , ,

, , , , ,

eLaser eCamera eDecide eExecute eObjective

grid row column angle objective actionARobot 
 (11)

where the superscript are the events which it is prepared to

respond to, and the subscript are the attributes, whose

meanings are: the grid represents the environment where the

robot moves in. Each cell stores the registered data obtained

from the sensors (the detected obstacles and markers). Row

and column are the position occupied by the robot in the grid.

Angle is the robot orientation. Objective is the objective room,

represented by its marker. And action is the string of

primitives and transformations that indicates the next

command to be executed by the robot. To simplify, in the

following equations this actor will be referred as

ARobot
E

<g,r,c,an,o,ac>.

The evolution function is, probably, the most important

element in the system, as it defines the way the robot behaves

in the environment, that is, it defines the artificial intelligence

of the robotic system. Let e be an event that is received by the

actor, the evolution function is defined as:

, , , , ,

', , , , , ,

', , , , ,

, ', ', ', , '

, , , , ,

,

(,)

()

E

g r c an o ac

E

g r c an o ac dist angle

E

g r c an o ac marker

E

g r c an o ac

E

g r c an o ac

g r

ARobot e

ARobot if e eLaser

ARobot if e eCamera

ARobot if e eDecide

ARobot if e eExecute

ARobot





 

   

   

 

 














, , , ',

, , , , ,

E

c an o ac marker

E

g r c an o ac

if e eObjective

ARobot otherwise

  

 







 



 (12)

where the symbol apostrophe (’) on an attribute indicates that

it has changed as a consequence of the received event. The

way the attributes change is the following:

 If e = eLaser<dist,angle>, the grid (g) must be updated to

indicate that an obstacle has been detected. The cell to

mark is the one in position (r + dist cos(ang + angle), c

+ dist sin(ang + angle)).

 If e = eCamera<marker>, the grid (g) must be updated to

indicate that a marker has been detected. The cell to

mark is (r + dist cos(ang), c + dist sin(ang)).

 If e = eDecide, the current position and orientation of

the robot (row r, column c and angle ang), must be

updated, as well as the actions to be executed. This

function is very important, as it provides the behavior

of the robot. In the following section, the way to

introduce intelligent behaviors will be shown.

 If e = eExecute, the actions of the robot must be

executed in the representation space, through the use of

the α function.

 If e = eOb jective<marker>, a new objective has been set

by the user, so the objective (o) must be changed to the

new one (marker).

 In any other case, the actor must remain unchanged.

E. Initial string

The initial string in our systems defined as:

, , , ,

, , , , ,

eLaser eCamera eDecide eExecute eObjective

grid row column angleARobot   
 (13)

where the attribute grid is initialized to a set of empty cells, the

attributes row, column and angle are the initial position and

orientation, and the objective and the action are empty.

F. Analysis

A set of tests has been designed to prove the features of our

model. Specifically, five tests have been carried out.

1) Test of the evolution function

As it was stated before, the evolution function is the way of

introducing intelligent behaviors in an actor. Therefore, the

aim of this test is to prove the suitability of the evolution

function to introduce new AI algorithms. This test is not to

obtain the best AI algorithm to achieve the goal, but to prove

that a new intelligent behavior can be introduced by just

changing the evolution function. An important question is

guaranteeing the same conditions for all the experiments, so

the AI algorithms are introduced with no other modification in

other parts of the system.

Two simple decision algorithms have been used to decide

how the robot should move in the world. The first algorithm

makes decisions randomly to find the target position. The

second one is the A
*
 algorithm [5], considering the Euclidean

distance to the goal as the weights. If there is an obstacle the

distance is defined as infinite.

2) Test of device independence

One of the main features of our model is that the system

definition is independent from the input devices. The aim of

this test is to prove that the input devices can be replaced

without changing the definition of the string representing the

system.

In our original system, a laser range sensor was used to

detect obstacles. In this test, a Kinect device is introduced. To

add this new device, we have just designed a new event

generator (gKinect) that creates events of the same type that

the ones generated by the laser generator. That is, it provides

the same information: the angle and the distance to the

obstacle. The new device is then introduced with no other

modification in the system. The Kinect is then used to replace

the laser device or to obtain redundant information for the

detection of obstacles.

3) Test to validate the simulation

The most important achievement in the proposed model is

the fact that the description for the simulation and for the real

robot is exactly the same. That is, the command execution for

the simulated robot can be directly used for the real robot with

no change in the string that represents the system.

Special Issue on Distributed Computing and Artificial Intelligence

-36-

To achieve this goal, two generators for the execution of the

robot commands have been implemented: one for the real

robot and one for the robot simulation. This way, the

commands are transparently executed no matter whether the

robot is real or simulated, just using the appropriate generator.

As a result, the navigation would be exactly the same for the

simulated robot and for the real one, if there were not

odometry errors. A good way to improve the simulation is

introducing some odometry errors in the motors and in the

sensor signals, accordingly with the features of the real robot.

4) Test of the system extensibility

The proposed model is, by definition, easily extensible. The

updating of the definition string supposes the extension of the

model and the addition of new features. Moreover, most

elements can be reused in new definition strings to obtain new

behaviors with little effort.

In our case, new instances of the actor symbols (representing

robots) have been added to the definition string to extend the

system in an almost immediate way and to create a multi-robot

system.

5) Test of changes in the environment

A desired capability in a robot navigation system is,

obviously, to be flexible enough to work under very different

conditions. To prove this feature, the system has been tested

with different maps (Fig. 3, 4 and 5), in the case of the

simulated robot, and in different real environments, in the case

of the real robot.

Fig. 3. Example map in 2D.

Fig. 4. Example map in 2D.

Fig. 5. Example map in 3D

IV. CONCLUSIONS

A new model to formally define virtual worlds,

independently from the underlying physical layer, has been

presented. Is has been used to model the control of a mobile

robot, navigating in a given environment, and using a set of

multimodal inputs from different types of sensors.

The model is based on a grammar which consists, on the

one hand, of symbols to abstract and represent the elements of

the system (primitives, actors, and so on) and, on the other

hand, of a set of evolution functions so that all these elements

can be combined in different ways leading to an infinite set of

possible strings belonging to the grammar. By definition, each

string has the ability to represent the interaction between the

elements (symbols) of the system and their state at any given

instant. By extension, these strings can also synthesize and

formally define the system state.

As in other systems for modeling virtual worlds, the event

and, in particular, the occurrence thereof, can bring about a

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 5.

-37-

change in the state of a particular element and, in general, a

change in the state of the system. Within the model, the event

generators are responsible for managing all the possible events

associated with the elements of the system.

The result of the events, namely the transition between

states, involves an evolution of the original string of the system

to another evolved string, which is obtained from the

application of certain rules on the first string. These rules are

defined within the actors, which contain the logic of how to act

and deal with an event if it is activated. The main restriction to

design the rules is that they should be able to translate the

consequence of the events into grammar rules. The grammar

rules must be applicable to the symbols of the state string and

the outcome of the rules application must return a consistent

string, syntactically and semantically possible.

The evolution function of the actors can be as complex as

needed. In fact, this function is the vehicle to introduce

intelligent behaviors in the system. This way, artificial

intelligence algorithms can be introduced into the evolution

function of the actor to provide it with the needed behavior.

Taking into account the diversity of virtual worlds systems

available nowadays and the wide variety of devices, this model

seems to be able to provide interesting features. Firstly, it is a

formal model based on a grammar that allows abstracting and

representing the states of the system in a general way by

avoiding the specific features of other existing systems. The

use of strings facilitates the parallelization and optimization of

the system processes. It is also a device-independent model,

therefore, is not linked to the implementation of the system

with a given set of devices. It also allows the replacement of

physical devices by simulated ones, and the easy addition of

new ones. For instance, in the case of our robotic system, the

definition string of the system is exactly the same for the

simulator and for the real robot. Finally, it is a flexible model

since it contemplates the possibility of reinterpreting the

outputs of the actions.

In conclusion, it has been achieved the main objective of

defining a new formal and generic model that is able to model

general virtual worlds systems by avoiding the specific

peculiarities of other models existing today.

REFERENCES

[1] Botts, M.; Percivall, G.; Reed, C. and Davidson, J.: OGC Sensor Web

Enablement: Overview And High Level Architecture. OGC White

Paper. Open Geospatial Consortium Inc., 2006.

[2] Davis, Martin; Sigal, Ron and Weyuker, Elaine J.: Computability,

Complexity, and Languages, Fundamentals of Theoretical Computer

Science, 2nd ed. San Diego: Elsevier Science, 1994.

[3] Ernst, Marc O. and Bülthoff, Heinrich H.: Merging the senses into a

robust percept. TRENDS in Cognitive Sciences, vol.8, no.4, 2004.

[4] Ingrand, F.; Chatila, R. and Alami, R.: An Architecture for Dependable

Autonomous Robots. IARP-IEEE RAS Workshop on Dependable

Robotics, 2001.

[5] Luo, Ren; Lin, Yu-Chih; Kao, Ching-Chung: Autonomous mobile robot

navigation and localization based on floor paln map information and

sensory fusion approach. IEEE MFI, 2010.

[6] Posadas, J.L.; Poza, J.L., Simó, J.E.; Benet, G.; Blanes, F.: Agent-based

distributed architecture for mobile robot control. Engineering

Applications of Artificial Intelligence, pp. 805-823, 2008.

[7] Poza, L.; Posadas, J.; Simó, J.; Benet, G.: Arquitecturas de control

jeraárquico inteligente con soporte a la calidad de servicio. XXIX

Jornadas de Automática, 2008.

[8] Russell, Stuart Jonathan and Norvig, Peter: Artificial intelligence: a

modern approach. Prentice Hall. ISBN: 0136042597, 2010.

[9] Sharma, R.; Pavlovic, V. I.; Huang, T. S.: Toward Multimodal Humar-

Computer Interface. Proceedings of the IEEE, vol. 86(5), pp. 853-869,

1998.

[10] Singhal, A.; Brown, C.: Dynamic bayes net approach to multimodal

sensor fusion. SPIE, 1997.

[11] Weser, Martin; Jockel, Sascha and Zhang, Jianwei: Fuzzy Multisensor

Fusion for Autonomous Proactive Robot Perception IEEE International

Conference on Fuzzy Systems (FUZZ), 2263-2267, 2008.

