
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-5-

Discover, Reuse and Share Knowledge on

Service Oriented Architectures

Jesús Soto Carrión
1
, Lei Shu

2
, Elisa Garcia Gordo

3

(1) Head of Artificial Intelligent Department, UPSAM University, Spain

(2) Specially Assigned Researcher, Osaka University, Japan

(3) Innovation consulting manager, ADIF (the Administrator of Railway Infrastructures), Spain

Abstract — Current Semantic Web frameworks provide a

complete infrastructure to manage ontologies schemes easing

information retrieval with inference support. Ideally, the use of

their frameworks should be transparent and decoupled, avoiding

direct dependencies either on the application logic or on the

ontology language. Besides there are different logic models used

by ontology languages (OWL- Description Logic, OpenCyc-FOL,

...) and query languages (RDQL, SPARQL, OWLQL, nRQL,

etc..). These facts show integration and interoperability tasks

between ontologies and applications are tedious on currently

systems. This research provides a general ESB service engine

design based on JBI that enables ontology query and reasoning

capabilities thought an Enterprise Service Bus. An early

prototype that shows how works our research ideas has been

developed.

Keywords — Service Oriented Architectures, Distributed

Computing, Semantic

I. INTRODUCTION

ecent advances in distributed computing have given rise a

new philosophy of iteration between software

components, called SOA. This new software architecture

allows software components developed with different

technologies can be "plug in" to an Enterprise Service Bus

(ESB), that enable the interoperability scenario. Any

component interface is described using WSDL (a open

standard language using to publish the functionality provided

by a service), in this way any software component can

understand the operations provided by other components and

establish the necessary communications to obtain a specific

goal.

This paper shows the impact and utility provided by

semantic web technologies "plug in" on ESB. Currently the

main ESB manufactures (Oracle, IBM, BEA or Sun) lack of

semantic web connectors (Chappell 2004), (Rademakers y

Dirksen 2008) this fact forces to build components using a

particular semantic web framework with following associated

problems (Jesús Soto-Carrión 2008):

 Hinder development tasks: there not exist a common

ontology access provider such as ADO or JDBC on data

access, each semantic web framework (Jena, Protégé-

OWL, Sesame or Redland) provided a specific application

programming interface. Besides each framework has been

developed with an specific programming language, this

fact, joined to previous explained, causes an strongly

dependency between application logic and semantic web

framework.

 Coupled applications: common semantic web

functionality implemented into different components.

On the other hand, component communication are

exchanged messages that contain data, usually these data

follow a fix structure (schema) without using flexible

knowledge expressions provided by the semantic web

emerging technology. Knowledge bases formalized with a

sound logic model such as OpenCyc[12] or ontologies written

in OWL-DL[1], should enhanced the interoperability scenarios

between "plugged" components inside an ESB providing a rich

semantic knowledge and inference operations.

The problems enunciated above broken the loose-coupling

principle of service design[7]. For that reason this research has

been focused on services interoperability using a general

ontology reasoning connector, that provides a normalize

interface to semantic functionality inside an enterprise service

bus. A prototype that shows the semantic connector benefits

has been developed. The functionality implemented using

OpenESB technology to be able to carry out a semantic search

on Google maps service using KML3 and a specific ontology

to allow semantic annotations. An example of these type of

search should be: "retrieve all religious building".

This paper has the following structure: firstly described a

brief introduction related to SOA concepts, secondly presents

the wide variety of query and knowledge representation

semantic web languages, thirdly currently shortcomings in

semantic web knowledge interoperability are exposed, fourthly

the solution is exposed using the emerging ESB technologies

to describe the general ontology reasoning connector,

following presents the GORCON prototype, finally

conclusions drawn for this work are explained.

II. SERVICE ORIENTED ARCHITECTURE

SOA is a form of technology architecture that adheres to the

principles of service-orientation[10], it is an evolution of past

platforms preserving successful characteristics of traditional

distributed architectures, and bringing with it the

interoperability among services that uses different technologies

including legacy applications, databases and another types of

backend systems. The main features provided by this

R

DOI: 10.9781/ijimai.2011.141

Special Issue on Computer Science and Software Engineering

-6-

architecture are:

 Enterprise Application integration: enable the

interoperability between new applications and legacy

systems, neither risks and collateral effects.

 Loused-coupled architecture: based on services that can

perform a delimited task, dependencies between services

are modeled on a high level layer (choreography and

orchestration).

 Business modeling: the business activities performed by a

company can be modeled with a business language [18]

that uses real human business language terms.

 Distributed technologies: necessaries to interconnect all

different types of services. SOA deploy specifications

SCA/SDO[2] and JBI[17] uses open standards in order to

enable an interoperability scenario between all different

services (DCOM, CORBA, Web Services, etc...).

 Abstraction: SOA abstracts programming language of

services. SOA uses languages based on open standards

(WSDL, SOAP, BPEL, ...) .

The SOA layers are showed in the figure 1, following are

explained from low-level to higher-level:

 Low-Level services: this layer contains all services that

perform delimited tasks. These services can be

implemented with different languages and interact with

information systems such as databases, legacy systems or

embedded systems (sonar, radar, and etcetera).

 Middleware services: intermediate layer that enclosed all

higher level services. These services uses low-level

services in order to perform a specific task, i.e. obtain the

best service provider (relative time, cost or effort).

 Business process: they are the more relevant entities

inside SOA architecture. These entities work as mediators,

they are invoked from an external request (can be origin

from presentation layer) or an internal event. They are

defined by orchestration and choreography

languages[11][3].

 Presentation: represents the visual interfaces of one

application or external systems that can invoke the

business process to execute a business task.

 Security: vertical layer that contains all security

technology artifacts used across all layers. SOA establish

security service communication using contract policies

[14], besides uses open standards to use a global identifier

among different systems[5].

 Government: enclosed all mechanisms that establish a

sound structure for decision making and planning. This

vertical layer is focused on lifecycle services and optimize

business process, analyzing how work SOA applications

that uses company politics, procedures and standards

(Brown et al. 2009).

Figure. 1 SOA Layers

A. SOA SERVICE – The Basic UNIT

 A service is not only a Web Service, commonly is usual

confuse the concept with the technology. In SOA a Service can

be developed with different technologies, the interfaces and

security policies are described using a neutral open language.

Thus the operations provided by a CORBA Servant or a

DCOM object can be described in WSDL Language (instead

of IDL or MIDL respectively). SOA provides the mechanisms

that enable an interoperability scenario between services

implemented with different distributed technologies (CORBA,

DCOM, JMS,...), due to the use of open languages that

facilitate understand the operations.

The interoperability concepts described by SOA

architecture require of a robust design principles. There are

several studies about the principles of service design (Oracle,

IBM..) , mainly all converge in following set of principles

annunciating by Thomas Erl[7]:

 Reusable: any service must be designed and developed

keeping in mind reuse its operations in a application,

company application domain or even for massive use in a

public domain.

 Communication based on formal contract : services must

provided a formal contract in which contained the narre of

the service, access way, the operations implemented

including in/out parameters description.

 Loose-coupling: services must be autonomous (such as

LEGO puzzle piece), therefore may designed without

relationship dependencies.

 Abstraction: services must hide logic and implementation

issues from the outside world.

 Composition: any service must be designed in order to be

used in higher-level services building.

 Stateless: a service implementation must not manage and

store information about state.

 Discover ability: services may be found and assessed by

some discover mechanism.

B. DEPLOYING SOA

A Service Oriented Architecture needs an infrastructure to

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-7-

deploy services, process and applications that interoperate

between them with different protocols and data schemes. The

software infrastructure that supports SOA is called Enterprise

Service Bus (ESB)[6].

1) ENTERPRISE SERVICE BUS (ESB)

An ESB provides a software infrastructure necessary to

deploy SOA architecture. Among features provided by the

most important suppliers (IBM, BEA, Oracle, Service Mix)

worth mentioning (figure 2):

 Connectivity between any type of services: there are

multitude of service technology that can be used inside a

SOA architecture, ie. DCOM, CORBA, EJB, LDAP

Servers, FTP, databases, JMS, MSMQ, SAP, CICS,

among others.

 Neutral language: used into ESB to describe operations

and interconnect services with a specific message

exchange protocol (MEP). Any message transmitted

inside the ESB can be enrouted.

 Data transformation mechanism: executed when two

services, that uses different data schemes, needs translate

data in order to establish a communication.

 BPM engine: interprets a business process language,

executing actions following the flow defined, invoking

services and receiving external request and messages.

 Security services: uses to provide a security layer to

protect communications.

 Administration components: enable the components

management installed on ESB, common operations that

control the component lifecycle are "install", "uninstall",

"stop" and "resume".

Figure. 2. Components "plugged" - Enterprise Services Bus

The internal architecture can be implemented with two

principal approach, Service Component Architecture (SCA) &

Service Data Objects (SDO) 4, and Java Business integration

[17].

2) SCA/SDO

Service Component Architecture (SCA) is a set of

specifications that describes an application building model on

a service oriented architecture. SCA specifications are focused

on component assembly, binding and implementation issues.

The component is the basic piece that exposes a group of

services using WSDL language. The assembly features

provides the mechanism to build composite components

describing the relationship structure with an XML languages.

Following the principles of SOA, components can be

implemented in different languages, for that reason its

necessary specify the binding type (jms, soap, etc...).

The messages transmitted between components contain data

necessary to execute the operations described on a service

interface. Service Data Objects are a set of specifications

(complementary to SCA specifications) that describes an

simplify data model and an uniform access to heterogeneous

data sets. SDO specifications are based on a disconnected data

access model, is an alternative to DOM model since allow

saving memory. SCA / SDO implementation examples are

HydraSCA (Rogue Wave Software), IBM WebSphere (feature

pack for SOA), BEA SCA for WebLogic, Oracle SOA/EDA

and Active Matrix (TIBCO).

3) JBI

Java Business Integration specification[17] defines

mediation architecture between heterogeneous services. The

structure of JBI is composed of three components (see figure

3): Component Framework, Normalized Message Router

(NMR) and Component Management:

Component Framework: describes all issues related to ESB

components. JBI specification distinguishes two components

types: "Service Engine" and "Binding Component". Service

Engine (SE) components are internal services charge of main

ESB execution functionalities, such as BPEL interpreter or

data translation and transformation services. Binding

Components (BC) enable service deploy over a SOA

architecture. The internal design allow "plug in" and "unplug"

components on an ESB (like a USB device). These features

provides a flexible way to establish an enterprise application

integration.

NMR provides a normalized message interchange

mechanism between ESB "plugged" components. Each service

(associate with a SE or BC component) exposes its interface

operations using a WSDL descriptor. The operations described

on WSDL interface establish the contract relationship with

consumers, necessary on SOA architectures to integrate

different components "plugged" on an ESB. Each normalized

message routed into ESB contains metadata, payload (based

on WSDL message structure) and attachments. These

messages are translated from a specific protocol to normalized

structured (and vice versa) by binding components, and

enrouted by means of NMR from start point to end point using

one of message exchange patterns (in-only, robust in-only, in-

out or in optional-out).

Component 1BC Start point

NMRBC End Point Component 2

Component Management enables the component lifecycle

management based on JMX. These management components

Special Issue on Computer Science and Software Engineering

-8-

provide operations to shutdown, stop, start, resume or paused

binding or service engine component execution.

Figure. 3. JBI Components

III. SEMANTIC WEB LANGUAGES & FRAMEWORKS

Currently semantic web emerging technologies provides a

wide range of frameworks that implement common

functionalities, among which highlights Jena, Sesame or

Redland. Each framework works with an specific set of

languages (publish on standards or proprietary specifications)

oriented to build and manage knowledge models. The ontology

languages widely used are RDF (Resource Description

Framework) and OWL (Ontology Web Language).

The general structure of a Semantic Web Framework has

been represented in figure 4 (Ontology API):

 Schema API: functions set oriented both building and

manipulating of ontology schema objects (class,

relationships, properties and data types).

 Individual API: provides the main functionality to manage

ontology individual objects.

 Inference API: include inference and reasoning

mechanism which allow additional facts to be inferred

from instance data and class descriptions. Besides it uses

an internal or external reasoner (mainly thought DIG

interface based on Description Logic Reasoners) to add

 check consistency, concept satisfiability, classification

and realization operations.

 Query API: also influenced by Inference API, establishes

the functionality to analyze and execute an specific

ontology query language such as SPARQL or nRQL

among others.

 Memory model: contains an ontology model on memory,

usually in a graph structure, to carry out ontology API

operations. A memory model can be serialized into an

storage device using the persistent subsystem.

 Persistent Subsystem: provides the main functionality to

work with a serialize ontology model upon a database or a

file in a timely and transparent fashion.

There is a framework initiative that defines a general design

to manage ontologies, called Protégé. In this research, Protégé

structure has been analyzed against other frameworks (Jena,

Sesame and Redland) to obtain software design ideas about

general ontology management and structure issues. An in-deep

explanation can be found in [9],[15],[16]. Based on CLOS

MOP (Common Lisp Object System - MetaObject Protocol)

and the Dynamic Object Model software design pattern,

Protégé provides a set of abstract class and interfaces that

allows execute ontology operations on different models (OWL

or RDFS).

Figure. 4 SWF - general structure

IV. PROBLEM DESCRIPTION

Semantic frameworks provide a complete functionality

focused to manage ontology models as had been previously

mentioned, however nowadays there is no consensus aimed to

resolve the strongly dependency between logic application and

semantic/persistent layer. When a software architect decides

change the semantic web framework underlying, just became

aware that it is a tedious task because all code is strongly

coupled [15].

Another motivation arises from the problem of distributed

scenarios when different software components exchange

information and need process common knowledge structures

(called ontologies). In an Enterprise Service Bus there are

binding components provided by third party manufactures that

allow "plug in" different pieces of software developed with a

vast variety of technology. Not all components can use

semantic technologies because its underlying technology is

older or not exits the way to create a binding.

Following an scenario is described in order to illustrate an

example of these problems: imagine a CICS component that

has been implemented using Cobol language and receives a set

of messages that contains a sequence of medicine patient

history based on OWL knowledge structured provided by open

electronic health record ontology (OEHR)[19], COBOL

language does not support a semantic library and the

component needs some relevant operations such as check the

consistency of data or retrieves all instances of one specific

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-9-

class. In view of this situation, it is necessary developed a

specific protocol between the CICS-COBOL component and

one semantic framework.

This research is focused to resolve these problems,

including SOA philosophy concepts, that suggest the

possibility of extend a distributed scenario where several

software components can take advantage of semantic

functionality deployed on a service engine.

V. GENERAL ESB SERVICE ENGINE DESIGN

Using the technology offered by an Enterprise Service Bus,

a general semantic service that resolves all problems

enunciated in the previous section can be developed.

Analyzing NMR behavior, external components should

consume operations provided by a semantic web framework.

This research uses only the following common operations:

 Check consistency: verify if an ontology is well defined,

without inconsistencies between data types, duplicate

entries, properties definitions, etcetera. Using this

operation, component software can check the consistency

of one or more individual received.

 Retrieve a specific individual.

 Retrieves individuals using SPARQL language.

Inspired by service engines and binding components

provided by JBI developer’s community and third party

manufactures, a semantic service engine has been

implemented. The general infrastructure that has been

supported the development is showed in figure 5. The General

Ontology Service Engine (GORSE) provides a general

interface that supports all operations previously enunciated

using Protégé OWL¬API as an underlying framework for

ontology processing. GORSE can be deployed on a Enterprise

Service Bus in accordance with JBI specification. Our

prototype has been developed using OpenESB7.

The figure 5 shows how GORSE receives messages via

Normalized Message Router. Using this system, different

components implemented with different technologies can used

semantic web functionality. For example, a IBM mainframe

which contains a COBOL subroutine that needs process a

XML file according an ontology schema instead of create a

new specific program to do these semantic processing tasks.

Another example can be a web service or some type of

component (DCOM,CORBA, etc..) witch is deployed within

an ESB but it is not possible uses a semantic web framework

due to implementation constraints, or if the architecture design

requirements establishes a decoupled semantic layer . GORSE

has been developed following the ideas provided by OpenESB

SQL Service Engine functionality[8]. The design structure is

showed in figure 6.

Layer structure showed in figure 6 contains the following

components explained from bottom to top:

 OpenESB: provides alI functionality related to build a

SOA environment that interconnects heterogeneous

services. GORSE has been built using libraries provided

to create internal services.

Figure. 5 Connection GORSE to NMR

 Interface Builder: used to develop a specific GORSE

service which exposes an interface that contains

management and query operations on a knowledge base

(owl file or protégé database persistent subsystem)

structured according to a

 conceptual model provided by an ontology. This

component is an OpenESB - Netbeans plugin.

 Deploy services: a set of libraries that provides common

functionality to deploy binding components or services

engines. Plugin API uses deploy services to place and

allocate resources into a SOA environment.

 Message Handler: is the highlight component focused to

parse all operations received by NMR bus and launch

suitable execution tasks. This component plays an

important role into GORSE layer structure, uses top and

bottom components functionality.

 Protege OWL-API: provides the main functionality to

manage a knowledge base based structured according an

ontology (classes, properties, instances and restrictions).

This library contains all functions related to manage an

ontology stored in a file or into a persistent subsystem.

GORSE: contains all specific tasks developed according the

service interface created thought Interface Builder plugin.

Following we provided a detailed description of Interface

Builder and GORSE components. All operations and messages

received from NMR follow a schema provided by an auto-

generated WSDL interface. The interface builder module has

been developed to generate automatically the WSDL ontology

Special Issue on Computer Science and Software Engineering

-10-

interface using specific parameters with are specified into

gorse-settings.xml file, following we show a short example:

<connection>

<database-url

value=jdbc:mysql://localhost:3306/model>

<knowledge-base value='ontomaps'/>

</connection>

This file contains key information about how GORSE gains

access to the ontology persistent subsystem. The given

example uses a short set of parameters, other ontology

serialized representations can be specified, for example an

OWL file instead of a relational database.

Figure. 6. GORSE Service Engine

Once the user has been configured these parameters, he

can launch the build process with which will be created the

WSDL interface. The interface builder model generates a

WSDL interface using the following short set of rules:

- For each OWL-CLASS
o Create a XSD ComplexType - XSDOWL-CLASS.

o Into a Sequence (*):

 Include an ontology ID element as

xsd:anytype.

 Mapping OWL Datatype properties -

XSD 1 elements

 Mapping OWL ObjectProperties -
XSD ComplexTypes

 Include references.
o Create Add-Operation

AddOnto[CLASS]lndividual and :

o Input Message: InputMsg

individual ns:XSDOWL-CLASS

o Output Message - ResponseOperationMsg:

resultcode xsd:int

o Create Remove Operation

o RemoveOntolndividual[CLASS]:
o One-Way message: IDMsg

 individuallD xsd:anyURl
o Create Find Operation - Search[CLASS]

o Input message - Find:

 inputdata ns:XSDOWL-CLASS
o Output message - FindResultsMsg:

 result ns:LIST-XSDOWL-CLASS
o Add SPARQL Query operation:

o Input Message:

 query xsd:string

o Output Message:

 LIST-XSDOWL-[CLASS]
o Create CheckConsistency Operation

o Input message - InputCheckConsistencyMsg:

 rawXMLdata xsd:string
o Output message

 ResultCheckConsistencyMsg:

 Resultxsd:Boolean

The above algorithm provides ontology control and

management common operations inside ESB infrastructures.

The service engine which implements WSDL interface is

composed of different classes (ref), as we showed in the figure

7 "ProviderSEMessageHandler" is the mainly class focused to

process all messages received from NMR message bus. This

class inherits of "AbstractMessageHandler" class, a generic

handler that includes relevant operations such as "send" or

"processMessage". - The "processInMessageOnProvider"

method declared in "ProviderSEMessageHandler" class,

contains relevant code necessary to process all messages

received from NMR Bus in accordance with ontology WSDL

specification interface.

Figure. 7 Main Class Relationships

VI. PROTOTYPE

In order to illustrate how GORSE works, we have been

developed an early prototype with uses and interconnect three

services: google maps, a GIS coordination service and finally

an ontology inside GlassFish OpenESB.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 4.

-11-

Figure. 8: Sequence of messages

 Figure 8 depicts the SOA environment created using

OpenESB to execute our test cases. All messages interchanged

between different services have been labeled with a sequence

number. The ontology has been plugged to OpenESB thought

GORSE service. Following the sequence, firstly GIS

coordination service receives a client request eg. searching

buildings and places thought a web page, examples of this

request are "religious buildings" or "has¬picture('Las

Meninas')". Secondly, this service uses a SOAP proxy class

created through GORSE WSDL interface to launch a request

with an SPARQL input message enclosed. Thirdly GORSE

service returns all results following a XSD schema. Finally

GIS Coordination service decoupled knowledge information

and KML data to merge into a Google Maps [13]. As an

example, the following query has been executed:

author:DiegoVe lázquez dc :c reator [O i l -onCanvas]

GIS coordination service translates the previous query to

SPARQL language as follows:

PREFIX

ontoK:

http://www.ijimai.org/2008/OntoKnowledgeBase.owl

SELECT ?resource ?coordinates WHERE{

 ?picture rdf:type ontoK:Oil-OnCanvas .

 ?picture dc:creator ontoK:DiegoVelazquez

 ?track ontoK:uri ?resource .

 ?track ontoK:coords ?coords .

"OntoK" prefix linking a limited ontology which have defined

classes, properties and individuals in order to execute

necessary case tests. This ontology is based on ATT Thesaurus

and KML Google Schema, first used on historical-art scenarios

and secondly necessary to work together with Google Maps.

Our prototype works with a small knowledge base structured

according to the ontology aforementioned. Using a wizard

(Interface Builder, see figure 6) built following NetBeans

philosophy, we have deployed a service on OpenESB that

listen and executed all actions received though NMR Bus,

such as "AddAuthor", "removeAuthor", "searchAuthor", "sea

rchOil-onCanvasPictures", among others class (GORSE

Service Engine showed on left side of figure 8). These actions

are invoked by GIS coordination service in our case. Results

data structure fulfill with an autogenerated XSD schema, and

are transfered to GIS Coordination Service into a SOAP

message. This service decoupled KML location information

Fig. 9 UI Prototype

Special Issue on Computer Science and Software Engineering

-12-

attached to individuals (stored into knowledge base) and

individual structure to fit on Interface results. Firstly to adding

a Google Maps overlay (right panel figure 9) and secondly to

depict a resume of results (left panel figure 9). Knowledge

structure can be used to create search filters that helps to

launch more thorough searches. On right panel of prototype

interface (see figure 9) a user can click on "Museo del Prado"

element and application straight afterwards launch a pop-up

window that shows the ontology structure. Therefore concepts

like "religious-buildings" or "art-galleries" can be used to

browse on knowledge base using GORSE service like common

gateway of ontology query and management operations.

VII. CONCLUSIONS AND FURTHER WORK

SOA philosophy concepts provide new scenarios where

interoperability of heterogeneous services is the key to reuse

legacy systems. Using these powerful technologies in our

research we have been suggest a new scenario where semantic

web technologies play an important role. Legacy systems take

advantage of all benefits provided by these technologies into a

SOA environment. Further work will be focused to improve

knowledge management and transport operations using

semantic web services "plugged" on an ESB.

REFERENCES

[1] Baader, F., D. Calvanese, D. L McGuinness, D. Nardi, y P. F Patel-

Schneider. 2002. The Description Logic Handbook. Cambridge

University Press.

[2] Bieberstein, Norbert, Robert G. Laird, Keith iones, y Tilak Mitra. 2008.

Executing SOA: A Practical Guide for the Service-Oriented Architect.

12 ed. IBM Press, Mayo 9.

[3] Bolie, Jeremy, Michael Cardella, Stany Blanvalet, et al. 2006. BPEL

Cookbook: Best Practices for SOA-based integration and composite

applications development. Packt Publishing, June 2000.

[4] Brown, William A., Robert G. Laird, Clive Gee, y Tilak Mitra. 2009.

SOA Governance: Achieving and Sustaining Business and IT Agility.

12 ed. IBM, Enero 1.

[5] Cantor, S., J. Kemp, N. R. Philpott, y E. Maler. 2005. Assertions and

Protocols for the OASIS Security Assertion Markup Language (SAML)

V2. 0. Committee Draft 4: 14.

[6] Chappell, David. 2004. Enterprise Service Bus. 1º ed. O'Reilly Media,

Inc., Junio.

[7] Erl, Thomas. 2007. SOA principies of service design. Upper Saddle

River, N.J. :: Prentice Hall,

[8] Jeff Stein.2007.open-esb: SQL Service Engine User's Guide.

Septiembre. http://wiki.open-

esb.java.net/Wiki.jsp?page=BuildSampleProjectSQLFileDatabaseWSD

L

[9] Jesús Soto-Carrión. 2008. Semantic mechanisms oriented to flexibility

of learning object metadata repositories. Universidad de Alcalá, Febrero

15.

[10] Josuttis, Nicolai. 2007. SOA in practice. Farnham: O'Reilly.

[11] Juric, Matjaz, B. 2006. Business Process Execution Language for Web

Services BPEL and BPEL4WS 2nd Edition. 2º ed. Packt Publishing,

Enero 9.

[12] Lenat, Douglas B. 1995. Cyc: A Large-Scale Investment in Knowledge

Infrastructure. Communications of the ACM 38, no. 11: 33-38.

[13] Purvis, Michael, Jeffrey Sambells, y Cameron Turner. 2006. Beginning

Google Maps Applications with PHP and Ajax: From Novice to

Professional. Apress, Agosto 14. Rademakers, Tijs, y Jos Dirksen. 2008.

Open-Source ESBs in Action. Manning Publications, Septiembre 28.

[14] Rosenberg, J., y D. Remy. 2004. Securing Web Services with WS-

Security: Demystifying WS-Security, WS-Policy, SAML, XML

Signature, and XML Encryption. Pearson Higher Education.

[15] Soto-Carrión, Jesús, Oscar SanJuan Juan, y Luis Joyanes. 2006.

Semantic Web Servers: A new approach to query on big datasets of

metadata. WSEAS Transactions on Computers 5, no. 11: 2658-2662.

[16] Soto-Carrión, Jesús, Salvador Sánchez-Alonso, y Miguel-Ángel Sicilia.

2005. Semantic learning object repositories: flexibility and

implementation issues.

[17] En .SUN JBI. 2005. Specification: JSR 208, Java Business Integration

(JBI)("Specification"). Agosto 23.

http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html.

[18] Weske, Mathias. 2007. Business Process Management: Concepts,

Languages, Architectures. 1º ed. Springer, Noviembre 3.

[19] Peter J. Groen, Marc Wine.Virtual Medical Worlds – June

2009.Medical Semantics, Ontologies, Open Solutions and EHR Systems

