
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 1, Nº 1, ISSN 1989-1660 72

Abstract —MDE paradigm promises to release developers from
writing code. The basis of this paradigm consists in working at
such a level of abstraction that will make it easyer for analysts
to detail the project to be undertaken. Using the model
described by analysts, software tools will do the rest of the task,
generating software that will comply with customer's defined
requirements. The purpose of this study is to compare general
purpose tools available right now that enable to put in practice
the principles of this paradigm and aimed at generating a wide
variety of applications composed by interactive multimedia and
artificial intelligence components.

Keywords—MDA, MDD, MDE, Software Factories

XVIII.INTRODUCTION

ODEL Driven Engineering (MDE) is a new paradigm
which opens new expectations in software

development. The aim of this idea is to release the developer
of the boring routine of writing in a specific programming
language the software that complies with the requirements
specified by the customer. If needs are correctly in a language
that machines can interpret, what would happen if we let
them translate it to a programming language?

M

Although its an emerging technology, in the last few years
its popularity has caused the creation of a considerable
number of tools based on it. The purpose of this study is to
compare the general purpose tools that are available right
now.

The remaining part of this paper is organized as follows: In
section 2, we present a brief review of the main concepts of
this paradigm, to understand the technical terms that will be
used afterwards. In section 3 we review related researches and
set the tools and features to be evaluated. In section 4 we
show a comparative study. In section 5 we discuss the results
and in section 6 we show our conclusions.

XIX.BACKGROUND

In the mid 60's “The Software Crisis” [14] came apart.
Software development had got to a point where mostly all
resources where spent in its maintenance instead of its
creation.

The origin of the problem was the fact that software
production was intended to create code as fast as possible to
deliver it to customers. The result was a poor quality
software, which carried out the basic needs of the customer,
with many errors and not very reliable. Its exploitation in
most cases meaned a long process of debugging and change.
This process degraded even more code quality, and made very
difficult to maintain by other developers.

Then, Software Engineering appears [17], consolidating
methodologies and increasingly sophisticated tools designed

to help engineers to work with a high-level overview of
systems which development they have to organize and run.

Software engineers design high-level documents supported
by graphics languages such as UML [11]. However, in most
cases, this initial documentation is not maintained anymore
when it comes to the later stages of development in which we
must codify and deadlines beset. The result is a rift between
high-level documentation and the real state of the project.

All these problems are compounded by the size and
complexity of the projects, emphasizing that the solution does
not seem likely to be focused on the code despite advances as
significant as the object oriented software and design
patterns.

Finally, in recent years a new paradigm has appeared
which tries to find a solution focusing on models: Model
Driven Engineering (MDE). Concerning this concept, several
proposals to implement appear, but the most important are:
Model Driven Architecture (MDA) and Software Factories,
one opposite to another.

A.Model Driven Engineering

The Model Driven Engineering (MDE), proposes to focus
software development on models, rather than on code. In this
context a good definition of a model is provided by the Object
Management Group (OMG) [8]: “A model of a system is a
description or specification of that system and its
environment for some certain purpose. A model is often
presented as a combination of drawings and text. The text
may be in a modeling language or in a natural language.”

From these models, combining two basic aspects [16]:
Domain-Specific Modeling Languages (DSML) to formalize
the application structure, behavior, and requirements within
particular domain, and transformation engines and
generators, to analyze certain aspects of models and then
synthesize various types of artifacts, which can range from
source code to alternative model representations.

The aim is to provide developers with the definition and
construction of a high level system module, and from then on,
create successive models with a lower level of abstraction
each time, reaching at last, a model directly executable on a
physical machine.

B.Model Driven Architecture

Model Driven Architecture (MDA), is an OMG proposal
[8] which seeks to standardize an implementation of MDE.
The three primary goals of MDA are portability,
interoperability and reusability through architectural
separation of concerns.

MDA defines three types of models, each with a higher
level of abstraction than the next:

The Computation Independent Model (CIM) shows the
system but does not show details of its structure. It is used to
answer the following question: What makes the system?

General purpose MDE tools
Elías Palacios-González, Héctor Fernández-Fernández, Vicente García-Díaz, B. Cristina Pelayo G-

Bustelo, Juan Manuel Cueva Lovelle, and Oscar Sanjuán Martínez
Web engineering research group - Oviedo University -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 1, Nº 1, ISSN 1989-1660 73

The Platform Independent Model (PIM) shows the
systems logic and its interactions with other systems but
without detailing what kind of technology it will use or if it
adapts itself to a particular platform. It is used to answer the
following question: How does the system do what was defined
in CIM?

The Platform Specific Model (PSM) which combines PIM
specifications with the details that specify how to use the
system with a particular type of platform.

To define these models, the technology proposed by OMG
is MOF [10]. Each of the Domain-Specific Modeling
Languages that are used to describe it (UML, SPEM, etc…),
will be defined by their corresponding metamodels which in
turn will be instances of MOF.

Transformation of models is the key to the process, which
consists of converting a model in another model of the same
system. The MDA tool must generate one or more PSMs from
a PIM along with a set of transformation rules. The same tool
or a different one will generate an executable model (source
code) of the application from PSM together with additional
information.

The standard language that proposes for the definition of
OMG transformation models is the Query / View /
Transformation (QVT) [10], which in turn is based, on the
restrictions language Object Constraint Language (OCL)
[12].

C.Software Factories

 Software Factories are an alternative to MDA leaded by
Microsoft. Both are opposite proposals, but an objective
analysis of these [9] leads to the conclusion that both are not
as antagonist as the confrontation of OMG vs. Microsoft
could make us suppose.

A Software Factory, is defined as [3] “A software product
line that provides a production facility for the product family
by configuring extensible tools using a software template
based on a software schema.”

Software Factories focus on the development of similar
systems by promoting reuse of architectures, software
components and knowledge. In this case the role of the model
is to define the design of the parts of the system that extend
the functionality of the patterns already developed.

XX.MDE TOOLS

To compare the tools, it is necessary to choose which are
the appropriate and which are the characteristics that are
going to assess for each of them. We have reviewed the
related work in recent years and we have selected a battery of
features to implement this study.

A.Related Work

There have been various studies characterizing and/or
comparing development tools oriented models. Most of these
are focused toward MDA tools that are without discussion,
the most popular.

Stuart Kent’s work [5] provides a first classification on the
basis of the aid that each tool provides the developer.

The study of King's College [6], is interesting but is
dedicated to a single tool, OptimalJ. The evaluated features
are drawn from the specification of MDA [8].

The work of Czarnecki and Helsen [2] is geared to
establish a classification approach of transformation models
which use the tools.

Molina el al. [7] conducted a comparison between
OptimalJ and ArcStyler based on the characteristics assessed
in the study of King's College [6] that added three additional
features

Tariq and Akhter in [18] establish a set of characteristics
that they understand are essential for a MDA tool. This study
was applied to 10 commercial tools.

Wang, W. compared to the extensive work [19], 6 tools
focused on the UML models transformation.

The work done by Herrera al. [4] is a compilation of the
characterizations made in most of the earlier work and brings
some new. However, the comparison focuses exclusively on
open-source tools.

Quintero and Anaya in [15] do a categorization of the tools
based on the usefulness for the end user. They conducted a
compendium and the selection of evaluation criteria used in
previous studies. Finally apply the comparative to 10 tools, 2
for each of the categories.

Bollat et al. in [1] conducted a comparison using features
drawn from previous work and the specification of MDA [8].
These features are studied in three tools in order to assess
whether any of these can be adapted to a particular
architecture.

Finally, in other work [13] we had an extensive review of
tools and collected many features defined in the other works
previously detailed.

B.Reviewed tools

Of all the tools seen in previous work, we have chosen for
our study those that meet a series of requirements that we
believe are suitable for automating and supporting the entire
MDE development process.

The required features were as follows:
2) Models level: The tool can handle CIM, PIM and PSM

models.
3) M2M: Tool performs transformations between models.
4) Applications type: It must be generalist, being oriented

to implement the widest possible coverage.
5) Graphical editor: Integrates a graphical editor of

models (typically UML), or a module that allows it.
We have decided to collect two sets of features of the

selected tools. The first group of characteristics identified the
tool and give idea about its origin and agility in its
development and maintenance. They are as follows:

• Name: Name of the tool.
• License: Type of license under which it is

distributed.
• Release: Release now available.
• Updated: Date has been released the

current version. This indicates whether the
tool has been recently updated or on the
other hand takes time stalled its
development.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 1, Nº 1, ISSN 1989-1660 74

• Last year releases: Number of versions
that have been released in the last 12
months (September 2007-September 2008).
This indicates whether the tool has been
frequently updated or on the other hand
takes time stalled its development.

• URL: Internet address where people can get
more information and eventually download
the tool.

The second group is purely technical features and we
considered important in deciding whether to choose one or
the other. They are as follows:

 Models language: Languages used to represent
models, both textual and graphical.

 Platform use: Platform on which the tool can be
used.

 Platform purpose: Platform for which the tool is
capable of generating code.

 Language purpose: Programming languages that is
capable of generating.

 Other features: Other features that may be
considered relevant to the tool.

XXI.COMPARISON

The tools selected from among those available today [20],
[21], [22] and that meet the requirements are ArcStyler,

Borland Together, AndroMDA and Eclipse Modelling.
OptimalJ, although it meets the requirements has been
dismissed for having been discontinued.

A.Identifity features

This set of features (Table I), identify the tool. Also give
ideas on the origin of the tool and agility in its development

and maintenance.

B.Technical features

This is the group of features (Table II) that are considered
important in deciding whether to choose one or another tool.

XXII.DISCUSSION

Now we will comment each of these tools, emphasizing its
strong and weak points.

AndroMDA is a powerful and versatile tool with a
consolidated cartridges system that allows generate code for
different architectures. Although it doesn’t have a graphical
editor, it supports UML 2.0 and Eclipse EMF based tools.
One possible drawback derived from its own versatility and
complexity is an abrupt learning curve.

Their development also seems somewhat stalled. After the
release of version 3.2 in November 2006, a beta version was
released of the expected 4.0 in May 2007. Almost a year later,
in April 2008 revision 3.3 was released with some minor
changes and corrections. Yet there has been no stable release
of version 4.0.

ArcStyler supports multiple platforms and a very friendly
interface. Stresses for its ease of use, but it seems that their
development is stalled, with its latest version of April 2006.

Borland bet with force by MDE with its tool Together, for

which has released two versions in the last year. It presents
an excellent support for PIM using BPMN and a user-friendly
interface based on Eclipse.

We also take in notice its implementation of OCL 2.0 and
the use of QVT for model-to-model transformations.

Eclipse modelling is not exactly a tool, but a framework
which includes many of these tools. But being a very active

TABLE II
TECHNICAL FEATURES

Name Metamodels Platform Use Platform purpouse Languaje Purpouse

AndroMDA UML 1.4 (XMI); All EMF-based JVM J2EE; .NET; Other Java; C#; etc..

ArcStyler UML 1.4 Windows; Linux; IBM RSM J2EE; .NET Java; C#

Borland Together UML 2.0 (XMI 2.0) JVM J2EE; .NET; Other Java, C++, and C#

Eclipse Modelling JVM

TABLE I
IDENTIFITY FEATURES

Name License Release Updated Last year release URL

AndroMDA BSD 3.3 21/04/2008 1 http://www.andromda.org

ArcStyler Commercial 5.5 11/04/2006 0 http://www.interactive-objects.com/products/arcstyler/arcstyler-
overview.html

Borland Together Commercial 2008 08/06/2008 2
(2007 and 2008) http://www.borland.com/us/products/together/index.html

Eclipse Modelling http://www.eclipse.org/modeling/

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 1, Nº 1, ISSN 1989-1660 75

project, with a large amount of free and advanced tools, has
moved us to include it in this work. To use this toolkit, we
must have a good knowledge of the technologies being
employed and dedicate a large amount of time in collecting
and preparing the proper plug-ins.

XXIII.CONCLUSIONS

From our point of view, the most advanced generalist tool,
easy to use and which meets the requirements, is now
Borland Together 2008. It specially emphasizes for its
support for PIM and implementation of standard MDA.

If you want to use free software, AndroMDA and Eclipse
Modelling tools are very nice options, although they need
more knowledge and dedication.

Anyway we should be alert for the of a stable version of
AndroMDA 4.0 with better support of PIM.

REFERENCES

[1] Bollat, V.; Vara, J. M.; Vela, B. & Marcos, E. (2007), Una revisión de
herramientas MDA, in 'Actas del II Taller sobre Desarrollo Dirigido por
Modelos, MDA y Aplicaciones (DSDM’05)'.

[2] Czarnecki, K. & Helsen, S. (2003), Classification of Model
Transformation Approaches, in 'Workshop on Generative Techniques in
the Context of Model-Driven Architecture (OOPSLA’03)'.

[3] Greenfield, J.; Short, K.; Cook, S. & Kent, S. (2004), Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools,
Wiley.

[4] Herrera, J. C.; Matteo, A. & Díaz, I. (2005), Una Caracterización de
Herramientas MDA de Código Abierto, in '8º Workshop Iberoamericano
de Ingeniería de Requisitos y Ambientes de Software (IDEAS´05)'.

[5] Kent, S. (2002), Model Driven Engineering, in 'IFM '02: Proceedings of
the Third International Conference on Integrated Formal Methods',
Springer-Verlag, London, UK, pp. 286--298.

[6] London, K. C. (2003), 'An Evaluation of Compuware OptimalJ
Professional Edition as an MDA Tool.', Technical report, University of
York.

[7] Molina, J. G.; Rodríguez, J.; Menárguez, M.; Ortín, M. & Sánchez, J.
(2004), Un estudio comparativo de dos herramientas MDA: OptimalJ y
ArcStyler, in 'I Taller sobre Desarrollo de Software Dirigido por Modelos,
MDA y Aplicaciones (DSDM)'.

[8] Mukerji, J. & Miller, J. (2003), 'MDA Guide V1.0.1'(omg/03-06-01),
Technical report, OMG.

[9] Muñoz, J. & Pelechano, V. (2005), MDA vs Factorías Software, in 'II
Taller sobre Desarrollo de Software Dirigido por Modelos, MDA y
Aplicaciones (DSDM)'.

[10] OMG (2005), 'Meta Object Facitity (MOF) 2.0
Query/View/Transformation Specification. Final Adopted Specification.',
Technical report, OMG.

[11] OMG (2003), 'UML 2.0 Superstructure Specification'.
[12] OMG (2003), 'UML 2.0 OCL Specification. Final Adopted Specification

(ptc/03-10-14)'.
[13] Palacios-González, E.; Fernández-Fernández, H. ; García-Díaz, V. ; Pelayo

G-Bustelo, B.Cristina & Cueva Lovelle, J. M. (2008), A review of
Intelligent Software development tools, in 'The 2008 International
Conference on Artificial Intelligence (ICAI'08). The 2008 World Congress
in Computer Science, Computer Engineering, and Applied Computing
(WORLDCOMP'08) ', Las Vegas, Nevada, USA.

[14] Pressman, R. S. (2002), Software engineering (5rd ed.): a practitioner's
approach, McGraw-Hill, Inc., New York, NY, USA.

[15] Quintero, J. & Anaya, R. (2007), Marco de Referencia para la Evaluación
de Herramientas Basadas en MDA, in 'X Workshop Iberoamericano de
Ingeniería de Requisitos y Ambientes de Software'.

[16] Schmidt, D. C. (2006), 'Guest Editor's Introduction: Model-Driven
Engineering', Computer 39(2), 25.

[17] Sommerville, I. (1989), Software Engineering, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[18] Tariq, N. & Akhter, N. (2005), 'Comparison of Model Driven Architecture
(MDA) based tools', Technical report, Institute of Technology y
Karolinska University Hospital. Stockholm.

[19] Wang, W. (2005), 'Evaluation of UML Model Transformation Tools',
Technical report, Business Informatics Group, Vienna University of
Technology.

[20] (Recovered in 02/2008), 'http://www.omg.org/mda/committed-
products.htm'.

[21] (Recovered in 02/2008), 'http://www.codegeneration.net/generators-by-
standard.php?standard=1'.

[22] (Recovered in 02/2008), 'http://www.lcc.uma.es/~av/MDD-MDA/'.

